Midterm 2 Solution

1. HONOR CODE

Please read the following statements of the honor code, and sign your name (you don't need to copy it). I will respect my classmates and the integrity of this exam by following this honor code. I affirm:

- I have read the instructions for this exam. I understand them and will follow them.
- All of the work submitted here is my original work.
- I did not reference any sources other than my one reference cheat sheet.
- I did not collaborate with any other human being on this exam.

\square

2. Tell us a joke or pun about circuits (1 point) All answers will be awarded full credit.

3. Why is the ammeter so hot? (14 points)

In the following circuit, we would like to measure the current I_{m} through resistor R_{L} using an ammeter.

(a) (4 points) If $I_{S}=4 \mathrm{~A}, R_{S}=3 \mathrm{~m} \Omega$, and $R_{L}=1 \mathrm{~m} \Omega$, then what is the measured current I_{m} ? Assume an ideal ammeter.

Solution:

The ideal ammeter is an equivalent short circuit.

Using the current divider equation, we have

$$
\begin{aligned}
& I_{m}=\frac{R_{S}}{R_{S}+R_{L}} \cdot I_{s}=\frac{(3 \mathrm{~m} \Omega)}{(3 \mathrm{~m} \Omega)+(1 \mathrm{~m} \Omega)}(4 \mathrm{~A}) \\
& I_{m}=3 \mathrm{~A} .
\end{aligned}
$$

(b) (4 points) Now suppose we have different values of I_{s} and R_{s} such that $I_{m}=2 \mathrm{~A}$, then what is the power dissipated by $R_{L}=1 \mathrm{~m} \Omega$? How much energy does R_{L} dissipate in 20 seconds?
Solution: To find the energy dissipated by R_{L} we can consider the current I_{L} through it and then use one of the power equations for a resistor $P=I^{2} L=R$. Doing this yields

$$
\begin{aligned}
I_{L} & =I_{m}=2 \mathrm{~A} \\
P_{L} & =I_{L}^{2} R_{L}=(2 \mathrm{~A})^{2}(1 \mathrm{~m} \Omega)=4 \mathrm{~mW}
\end{aligned}
$$

The amount of energy dissipated by R_{L} in 20 seconds is just the product of power and time (since power is constant) which gives

$$
\begin{aligned}
E_{L} & =P_{L} \Delta t=(4 \mathrm{~mW})(20 \mathrm{~s}) \\
& =80 \mathrm{~mJ}
\end{aligned}
$$

(c) (6 points) Now assume the ammeter is not ideal and can instead be modeled with equivalent resistance R_{A}. That is, we can replace the ammeter with a resistor R_{A} :

If $I_{S}=4 \mathrm{~A}, R_{S}=3 \mathrm{~m} \Omega, R_{L}=1 \mathrm{~m} \Omega$, and the current measured by the ammeter (i.e., the current through R_{A}) is $I_{m}=2 \mathrm{~A}$, then what must be the internal resistance R_{A} of the ammeter? How much power is dissipated by the ammeter?
Solution:
The equivalent circuit replaces the non-ideal ammeter with an equivalent resistance R_{A}.

Using a current divider and combining R_{A} and R_{L} we get,

$$
\begin{aligned}
I_{m} & =\frac{R_{S}}{R_{S}+\left(R_{A}+R_{L}\right)} \cdot I_{S} \\
I_{m} R_{A} & =I_{S} R_{S}-I_{m} \cdot\left(R_{S}+R_{L}\right) \\
R_{A} & =\frac{I_{S}}{I_{m}} R_{S}-\left(R_{S}+R_{L}\right) \\
& =\frac{(4 \mathrm{~A})}{(2 \mathrm{~A})}(3 \mathrm{~m} \Omega)-(3 \mathrm{~m} \Omega+1 \mathrm{~m} \Omega) \\
R_{A} & =2 \mathrm{~m} \Omega
\end{aligned}
$$

The power dissipated by the ammeter is then

$$
\begin{aligned}
P_{A} & =I_{m}^{2} R_{A}=(2 \mathrm{~A})^{2}(2 \mathrm{~m} \Omega) \\
& =8 \mathrm{~mW}
\end{aligned}
$$

4. Just Solvin' a Circuit (18 points)

(a) (2 points) For this part only, consider the following circuit. For each element in the circuit (including the sources!), label the missing current or voltage using passive sign convention. Please label directly on the given circuit below. Voltage labels should have $+/-$ terminals. For example, the voltage source $V_{s_{1}}$ has its voltage already labeled $\left(V_{5}\right)$ but is missing its current label.

Solution: Every element should have a voltage, current, and $+/-$ terminals labeled. The current should flow from the positive terminal to the negative terminal following passive sign convention.

Now, for the remaining parts, consider an entirely different circuit which is already labeled.

(b) (2 points) Write the KVL equation for the labeled loop in terms of element voltages $\left(V_{1}, V_{2}, \ldots, V_{8}\right)$ only.
Solution: Depending on which convention is used,

$$
-V_{4}-V_{5}+V_{8}+V_{6}=0
$$

or

$$
V_{4}+V_{5}-V_{8}-V_{6}=0
$$

or any equivalent expression.
(c) (4 points) Write the KCL equations for nodes u_{1} and $u_{2} \mathbf{O N L Y}$ in terms of $I_{s 1}$, $I_{s 2}$, node voltages (not element voltages!), and resistances.

Solution:

For u_{1},

$$
\begin{array}{r}
i_{1}+i_{2}+i_{7}=0 \\
i_{1}+i_{2}-I_{s 1}=0 \\
\frac{u_{1}}{R_{1}}+\frac{u_{1}-u_{3}}{R_{2}}-I_{s 1}=0 \\
\text { or equivalent equations }
\end{array}
$$

For u_{2},

$$
\begin{array}{r}
i_{3}+i_{4}+i_{7}=i_{5} \\
\frac{u_{3}-u_{2}}{R_{3}}-\frac{u_{2}}{R_{4}}-I_{s 1}+I_{s 2}=0
\end{array}
$$

or equivalent equations. Note that $I_{s 2}$ could also be replaced with $\frac{u_{2}-u_{4}}{R_{5}}$ or $-\frac{u_{5}}{R_{6}}$

Here the circuit is redrawn for your convenience:

(d) (10 points) Solve for the voltage V_{1} across and current I_{1} through R_{1} given the following values:

$$
\begin{gathered}
R_{1}=4 \Omega, R_{2}=2 \Omega, R_{3}=1 \Omega, R_{4}=1 \Omega, R_{5}=7 \Omega, R_{6}=4 \Omega \\
V_{s}=6 V, I_{s 1}=9 A, I_{s 2}=3 A
\end{gathered}
$$

You do NOT need to solve for all quantities in the circuit nor use all of the above given values in your answer.

Here the circuit is redrawn for your convenience:

Solution: With these given values, we have the following circuit:

To find i_{1} and V_{1}, we perform superposition on the circuit.

First, turn V_{s} on and zero out all other independent sources. This means that $I_{s 1}$ and $I_{s 2}$ behave like open circuits.

By inspection, the left half of the circuit is a voltage divider. By the voltage divider formula,

$$
V_{1}=\frac{4 \Omega}{2 \Omega+4 \Omega} \cdot 6 V=\frac{2}{3} \cdot 6 V=4 V
$$

Using Ohm's Law, we can find i_{1} from V_{1} :

$$
i_{1}=\frac{V_{1}}{R_{1}}=\frac{4 V}{4 \Omega}=1 A
$$

Next, turn on $I_{s 1}$ and zero out all other independent sources. This means that V_{s} behaves like a wire and $I_{s 2}$ behaves like an open circuit.

By inspection, we have a current divider, where the $9 A$ current splits into the 4Ω and 2Ω branches. We can then apply the current divider formula as follows:

$$
i_{1}=\frac{2 \Omega}{2 \Omega+4 \Omega} \cdot 9 A=\frac{1}{3} \cdot 9 A=3 A
$$

Using Ohm's Law, we can find V_{1} from i_{1} :

$$
V_{1}=i_{1} R_{1}=3 A \cdot 4 \Omega=12 \mathrm{~V}
$$

Alternatively, we can solve this via NVA:

We write KCL for node u_{1} and solve:

$$
\begin{gathered}
\frac{u_{1}}{R_{1}}+\frac{u_{1}}{R_{2}}=I_{s 1} \\
\frac{R_{2} u_{1}+R_{1} u_{1}}{R_{1} R_{2}}=\frac{\left(R_{1}+R_{2}\right) u_{1}}{R_{1} R_{2}}=I_{s 1} \\
V_{1}=u_{1}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} I_{s 1}=\frac{8 \Omega^{2}}{6 \Omega} \cdot 9 A=12 V \\
i_{1}=\frac{V_{1}}{R_{1}}=\frac{R_{2}}{R_{1}+R_{2}} I_{s 1}=\frac{2 \Omega}{4 \Omega+2 \Omega} \cdot 9 A=3 A
\end{gathered}
$$

Lastly, turn on $I_{s 2}$ and zero out all other independent sources. This means that V_{s} behaves like a wire and $I_{s 1}$ behaves like an open circuit.

We can simplify the circuit by combining resistors R_{1} and R_{2} which are in series:

By inspection, the $R_{1}+R_{2}$ resistor is shorted because it is connected in parallel to a wire. This means there is no current flowing through the $R_{1}+R_{2}$ resistor. To see this, we can use Ohm's Law:

$$
\begin{gathered}
u_{3}=\text { ground }=0 \\
i_{1}=\frac{u_{3}-0}{R_{1}+R_{2}}=\frac{0}{R_{1}+R_{2}}=0 \mathrm{~A} \\
V_{1}=i_{1} R_{1}=0 \mathrm{~V}
\end{gathered}
$$

Alternatively, we can solve this via NVA by using KCL at node u_{1} :

$$
\begin{aligned}
i_{1} & =i_{2} \\
\frac{u_{1}}{R_{1}} & =\frac{u_{1}}{R_{2}}
\end{aligned}
$$

Since $R_{1} \neq R_{2}$, the above equation is only true if $u_{1}=0$. Then,

$$
\begin{aligned}
i_{1} & =\frac{u_{1}}{R_{1}}=0 \mathrm{~A} \\
V_{1} & =i_{1} R_{1}=0 \mathrm{~V}
\end{aligned}
$$

Finally, using superposition we can sum up the contributions from all three sources to find i_{1} and V_{1} of the complete circuit:

$$
\begin{aligned}
& i_{1}=\left.i_{1}\right|_{V_{S, o n}}+\left.i_{1}\right|_{I_{s l, o n}}+\left.i_{1}\right|_{I_{s, 2, o n}}=1 \mathrm{~A}+3 \mathrm{~A}+0 \mathrm{~A}=4 \mathrm{~A} \\
& V_{1}=\left.V_{1}\right|_{V_{s, o n}}+\left.V_{1}\right|_{I_{s 1,0 n}}+\left.V_{1}\right|_{I_{s 2,0 n}}=4 \mathrm{~V}+12 \mathrm{~V}+0 \mathrm{~V}=16 \mathrm{~V}
\end{aligned}
$$

5. Op Amps and Comparators (17 points)

(a) (2 point) Consider the following op-amp for this part only. Notice the + and - signs are missing on the op-amp input. Please label them such that the op-amp is in negative feedback.

Solution:

This circuit is in negative feedback because "dinking" the output voltage of the Op-Amp causes U^{-} (the negative input terminal of the $\mathrm{Op}-\mathrm{Amp}$) to increase as well which then causes $V_{\text {out }}=\mathrm{A}\left(U^{+}-U^{-}\right)$ to decrease. Since U^{-}is in some way connected back to $V_{\text {out }}$ and the dinked output led to a subsequent change in the opposite direction, the circuit is indeed in negative feedback.

For the next two parts consider an entirely new op-amp circuit. Determine the following (you can assume that the op-amp is ideal and in negative feedback):

(b) (3 point) What is the voltage held at the negative terminal of the op-amp (the node labeled (b))? Express your answer in terms of the variables shown in the circuit diagram.
Solution:
Since it is given that we are working with an ideal Op-Amp and our Op-Amp is in negative feedback, we can apply the second golden rule to this circuit $\left(U^{+}=U^{-}\right)$. Since U^{+}is connected to ground node and we know ($U^{+}=U^{-}$), U^{-}must be 0 V .
(c) (6 points) What is $I_{\text {out }}$, the current flowing through R_{L} ? Express your answer ONLY in terms of $V_{\text {in }}, R_{1}, R_{2}, R_{3}, R_{L}$. You cannot use $V_{\text {out }, 1}$ in your final expression.
Solution:

The above circuit uses ideal Op-Amps and is in negative feedback. Thus, we can apply the two golden rules:

1. $I^{+}=I^{-}=0 A$
2. $U^{+}=U^{-}=0 V$ (from part b)

We can solve for $V_{\text {out }, 1}$ first and then use Ohm's law to get the desired $I_{\text {out }}$.
To begin, we perform KCL on U^{-}:
$I_{R_{1}}+I_{R_{3}}=I_{R_{2}}$
$\frac{V_{V_{i n}}}{R_{1}}+\frac{V_{R_{3}}}{R_{3}}=\frac{U^{-}}{R_{2}}$
$\frac{V_{o u t, 1}}{R_{3}}=-\frac{V_{\text {in }}}{R_{1}}$
Solving for $V_{\text {out }, 1}$, we get:
$V_{\text {out }, 1}=-\frac{R_{3}}{R_{1}} V_{\text {in }}$
Finally, applying Ohm's law gives $I_{\text {out }}=\frac{V_{\text {out }, 1}}{R_{L}}=-\frac{R_{3}}{R_{1} R_{L}} V_{\text {in }}$
(d) (3 points)

Now consider attaching an ideal comparator to the output of the op-amp circuit from the previous part.

Suppose the output voltage of the op-amp is $V_{\text {out }, 1}=-2 V$ What is $V_{\text {out }, 2}$, the voltage outputted by the comparator?

Solution:

We know that when the input voltage at the negative terminal of the comparator exceeds that at the positive terminal, then we output $V_{S S}$. However, when the input voltage at the positive terminal of the comparator exceeds that at the negative terminal, then we output $V_{D D}$. When they are equivalent to each other (i.e. $U_{c}^{+}=U_{c}^{-}$), then we see the comparator instantenously change from outputting $V_{S S}$ to outputting $V_{D D}$. Therefore, we can compute the difference of the voltages at the two input terminals to determine the output of the comparator:
$U_{c}^{+}=V_{\text {out }, 1}=-2 \mathrm{~V}$
$U_{c}^{-}=3 \mathrm{~V}$
$U_{c}^{+}-U_{c}^{-}=-2 \mathrm{~V}-3 \mathrm{~V}=-5 \mathrm{~V}<0$ Therefore, $V_{\text {out }, 2}=V_{S S}=-5 \mathrm{~V}$
(e) (3 points) Sketch the output behavior of the comparator on the plot provided for different values of $V_{\text {out }, 1}$.

Solution:

Observe that we always output the value of $V_{S S}$ when $U_{c}^{+}<U_{c}^{-}$, switch from outputting $V_{S S}$ to outputting $V_{D D}$ when $U_{c}^{+}=U_{c}^{-}$, and remain outputting $V_{D D}$ for the entire time that $U_{c}^{+}>U_{c}^{-}$. Also observe that the shape of the graph takes on the shape of the internal labeling of the comparator!

6. Oski is Soldering a Resistive Touchscreen (12 points)

(a) (4 points) Oski attended Touchscreen 2 lab and was able to make a resistive touchscreen model that supports 9 touches. The schematic of the touchscreen bottom mesh is shown on Fig. 1.

Fig. 1: The bottom mesh of a 2D touchscreen schematic.
Knowing that the lab model suggests to take all 12 resistors to have the same value, and $V_{s}=8 V$, what are the voltage values on each node? Fill out the table:

node name	voltage (V)
u 1	
u 2	
u 3	
u 4	
u 5	
u 6	
u 7	
u 8	
u 9	

Solution:

node name	voltage (V)
u 1	6
u 2	8
u 3	6
u 4	4
u 5	4
u 6	4
u 7	2
u 8	0
u 9	2

$$
\begin{gathered}
u_{8}=0 \mathrm{~V} \text { (ground node) } \\
u_{2}=8 V(\text { from the voltage source }) \\
u_{5}=\frac{1}{2} u_{2}=4 \mathrm{~V} \\
u_{4}=u_{6}=u_{5}=4 \mathrm{~V} \\
u_{1}=u_{3}=4 \mathrm{~V}+\frac{1}{2}(8-4) \mathrm{V}=6 \mathrm{~V} \\
u_{7}=u_{9}=\frac{1}{2}(4-0) \mathrm{V}=2 \mathrm{~V}
\end{gathered}
$$

(b) (2 points) The lab Oski is in only has a two different types of resistor, R_{1} and R_{2}. They are both 4-band resistors but have different colored bands: R_{1} has yellow-violet-red-gold and R_{2} has red-violet-yellowgold. What are the values of resistances $\mathbf{R}_{\mathbf{1}}$ (yellow-violet-red-gold) and $\mathbf{R}_{\mathbf{2}}$ (red-violet-yellow-gold). Include the tolerance value in your answer (you may leave it as a percentage). You may put your answer in scientific notation. Refer to Fig. 2 for the color code convention.

Color	Color	1st Band	2nd Band	3rd Band Multiplier	4th Band Tolerance
Black		0	0	$\mathrm{x} 1 \Omega$	
Brown		1	1	$\mathrm{x} 10 \Omega$	$\pm 1 \%$
Red		2	2	$\mathrm{x} 100 \Omega$	$\pm 2 \%$
Orange		3	3	$\mathrm{x} 1 \mathrm{k} \Omega$	
Yellow		4	4	$\mathrm{x} 10 \mathrm{k} \Omega$	
Green		5	5	$\mathrm{x} 100 \mathrm{k} \Omega$	$\pm 0.5 \%$
Blue		7	6	$\mathrm{x} 1 \mathrm{M} \Omega$	$\pm 0.25 \%$
Violet		8	7	$\mathrm{x} 10 \mathrm{M} \Omega$	$\pm 0.10 \%$
Grey		9	8	$\mathrm{x} 100 \mathrm{M} \Omega$	$\pm 0.05 \%$
White				$\mathrm{x} 1 \mathrm{G} \Omega$	
Gold				$\mathrm{x} 0.1 \Omega$	$\pm 5 \%$
Silver				$\mathrm{x} 0.01 \Omega$	$\pm 10 \%$

Fig. 2: 4-band resistor color code convention table.

Solution:

$$
\begin{aligned}
& R_{1}(\text { yellow-violet-red-gold })=47 \times 10^{2} \pm 5 \%=4.7 \mathrm{k} \Omega \\
& R_{2}(\text { red-violet-yellow-gold })=27 \times 10^{4} \pm 5 \%=270 \mathrm{k} \Omega
\end{aligned}
$$

(c) (6 points) It turns out that Oski's bottom mesh does not work as it is proposed in the lab. Looking at the photo of Oski's circuit in Fig. 3, we see that Oski accidentally used R_{2} instead of R_{1} on the right side of the circuit. As a result, not all the resistor values are the same, which was a requirement we saw in part (a). Regardless of the values in the previous parts, assume that $R_{1}=1 \mathrm{k} \Omega$ and $R_{2}=2 \mathrm{k} \Omega$ and the voltage source $V_{s}=8 \mathrm{~V}$ remains the same as part a). What are the voltages at nodes u_{3} and u_{6} ?

Fig. 3: A buggy bottom mesh of a 2D touchscreen.
Solution: They key thing to note is that the currents between u_{4} and u_{5} as well as between u_{5} and u_{6} is 0 . Thus the desired node voltages can be found using voltage dividers

$$
\begin{gathered}
u_{6}=\frac{R_{1}+R_{2}}{2 \times\left(R_{1}+R_{2}\right)} u_{2}=\frac{1}{2} u_{2}=4 V \\
u_{3}=\frac{R_{2}+R_{2}+R_{1}}{2 \times\left(R_{1}+R_{2}\right)} u_{2}=\frac{20}{3} V
\end{gathered}
$$

7. Making circuits equivalent (18 points)

(a) (8 points) Suppose you are given a mysterious circuit element shown below. You are also given the IV curve of the circuit at nodes a and b (also shown below).

Now you would like to model this mysterious circuit two different ways. One with each circuit below:

Find the values $V_{t h}, R_{t h}, I_{n o}$, and $R_{n o}$ such that all 3 circuits (the mystery circuit and the two above) are equivalent. Note the direction of $I_{\text {out }}$ in the mysterious circuit!
Solution: We recognize the below circuits as the Thevinin and Norton equivalents of the given mystery circuit. Recall that the Thevinin voltage $V_{t h}$ is the x-intercept of the IV curve, the Norton current $I_{n o}$ is the negative y-intercept of the IV curve, and $R_{t h}=R_{n o}$ is the inverse of the slope of the IV curve. Thus, just by reading the plot we can deduce that

$$
V_{t h}=4 V, \quad I_{n o}=2 A, \quad R_{t h}=R_{n o}=\frac{4}{2}=2 \Omega .
$$

(b) (10 points) Suppose now we are given a new circuit (shown below), but this time we know all the components except one resistor R :

We also know that we can model the circuit at nodes a and b using the following equivalent circuit:

Find the resistor value R in the new circuit such that $I_{e q}=0.25 A$.
Solution: Connecting terminals a and b in the original circuit, we want to find the current $I_{a b}$ going through it, which equals our $I_{e q}$.

The wire ends up shorting the 5Ω resistor so our equivalent circuit looks like this:

Now we can simply combine R with the 20Ω resistor (they share the same current $I_{a b}$) and use the fact that resistors in parallel share the same voltage

$$
I_{a b}=\frac{10}{R+20} \quad R=\frac{10-20 I_{a b}}{I_{a b}}=20 \Omega .
$$

The circuit is redrawn here for your convenience:

8. Capacitors in the Wild (20 points)

(a) For the following circuit, find the equivalent capacitance between the specified nodes in terms of the given capacitors, C_{i}. You may use the parallel operator $\|$ for simplification (e.g. a valid answer format could be $C_{e q}=C_{6}+\left(C_{7} \|\left(C_{8}+C_{9}\right)\right)$).

i. (4 points) Find the equivalent capacitance between nodes X and Y.

Solution:

$$
C_{e q}^{X Y}=C_{2}+C_{1} \|\left(C_{3}+\left(C_{4} \| C_{5}\right)\right)
$$

ii. (4 points) Find the equivalent capacitance between nodes Y and Z.

Solution:

$$
C_{e q}^{Y Z}=C_{1}\left\|C_{2}+C_{3}+C_{4}\right\| C_{5}
$$

(b) (12 points) In the following circuit, switches labeled ϕ_{1} are closed during phase 1 and open during phase 2 ; switches labeled ϕ_{2} are closed during phase 2 and open during phase 1 . Assume before phase 1 all capacitors are fully discharged. Each phase is long enough that the circuit reaches steady-state. Find $\mathrm{V}_{\text {out }}$ in phase 2 in terms of $V_{s}, C_{1}, C_{2}, C_{3}$, and C_{4}. You may use the parallel operator $\|$ in your final answer.

The circuit is redrawn here for your convenience.

Solution:

First we draw the equivalent circuit diagrams in both phases. Phase 1:

Phase 2:

We note that C 1 and C 2 are in series for both phases, and C 3 and C 4 are in parallel for both phases as well. Therefore, as we are looking to compute the value of $V_{\text {out }}$, we can combine C 1 and C 2 , and C 3 and C4 and work with their equivalent capacitances to simplify calculations. It is possible to solve without this step, but it is more work. Let:

$$
\begin{gathered}
C_{12}=C_{1} \| C_{2}=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \\
C_{34}=C_{3}+C_{4}
\end{gathered}
$$

We obtain the following equivalent circuit:

In this circuit, C_{12} and C_{34} are in parallel, and the voltage across both capacitors is V_{s}. Therefore, the magnitude of charges during phase 1 on both capacitors are

$$
\begin{align*}
& Q_{12}^{\phi_{1}}=C_{12} V_{s} \tag{1}\\
& Q_{34}^{\phi_{1}}=C_{34} V_{s} \tag{2}
\end{align*}
$$

Now, during phase 2, the circuit looks like the following with our equivalent capacitors:

First, we have that in phase 2: $V_{\text {out }}=V_{34}^{\phi_{2}}$.
From KVL, we get:

$$
\begin{equation*}
V_{s}+V_{12}^{\phi_{2}}-V_{34}^{\phi_{2}}=0 \tag{3}
\end{equation*}
$$

Also, for each capacitor we have $Q=C V$:

$$
\begin{align*}
& Q_{12}^{\phi_{2}}=C_{12} V_{12}^{\phi_{2}} \tag{4}\\
& Q_{34}^{\phi_{2}}=C_{34} V_{34}^{\phi_{2}} \tag{5}
\end{align*}
$$

Finally, we have one floating node, which is connected to both positive capacitor plates. Therefore, conserving the change between both phases we have:

$$
\begin{equation*}
+Q_{12}^{\phi_{1}}+Q_{34}^{\phi_{1}}=+Q_{12}^{\phi_{2}}+Q_{34}^{\phi_{2}} \tag{6}
\end{equation*}
$$

Now, we solve!
First, plugging (1), (2), (4) and (5) into (6), we get:

$$
\begin{equation*}
V_{s} \cdot\left(C_{12}+C_{34}\right)=C_{12} V_{12}^{\phi_{2}}+C_{34} V_{34}^{\phi_{2}} \tag{7}
\end{equation*}
$$

Dividing equation (7) by C_{12} and adding with equation (3), we get:

$$
V_{s}+V_{12}^{\phi_{2}}-V_{34}^{\phi_{2}}+V_{s} \frac{C_{12}+C_{34}}{C_{12}}=V_{12}^{\phi_{2}}+\frac{C_{34}}{C_{12}} V_{34}^{\phi_{2}}
$$

Where, we can solve for C_{34} (which is equal to $V_{\text {out }}$):

$$
\begin{aligned}
& V_{s}\left(1+\frac{C_{12}+C_{34}}{C_{12}}\right)=V_{34}^{\phi_{2}}\left(1+\frac{C_{34}}{C_{12}}\right) \\
& V_{s}\left(\frac{2 C_{12}+C_{34}}{C_{12}}\right)=V_{34}^{\phi_{2}}\left(\frac{C_{12}+C_{34}}{C_{12}}\right)
\end{aligned}
$$

Therefore,

$$
V_{34}^{\phi_{2}}=V_{s}\left(\frac{2 C_{12}+C_{34}}{C_{12}+C_{34}}\right)
$$

Where,

$$
\begin{gathered}
C_{12}=C_{1} \| C_{2}=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \\
C_{34}=C_{3}+C_{4}
\end{gathered}
$$

This answer is enough.
Answer without equivalent capacitances:

$$
\left.\begin{array}{c}
V_{34}^{\phi_{2}}=V_{s}\left(\frac{2\left(C_{1} \| C_{2}\right)+C_{3}+C_{4}}{C_{1} \| C_{2}+C_{3}+C_{4}}\right) \\
V_{34}^{\phi_{2}}=V_{s}\left(\frac{2 \frac{C_{1} C_{2}}{C_{1}+C_{2}}+C_{3}+C_{4}}{C_{1} C_{2}} C_{1}+C_{2}+C_{3}\right.
\end{array}\right) .
$$

