PRINT your student ID: \qquad

PRINT AND SIGN your name: \qquad ,
(last name)
(first name)
(signature)
Print the time of your discussion section and your GSI(s) name: \qquad

PRINT the student IDs of the person sitting on your right: \qquad and left: \qquad

General Notes

- This exam has a combination of multiple choice, fill in the blank, and free response questions.
- This exam will be partially auto-graded. You must adhere to the following format to receive full credit:
- For fill in the blank and free response questions, legibly write your final answer entirely in the provided boxes. Any work done outside of the provided boxes will not be graded.
- For multiple choice questions, select exactly one choice by filling the bubble
\bigcirc You must choose either this option.Or this one, but not both!

1. HONOR CODE

Please read the following statements of the honor code, and sign your name (you don't need to copy it).
I will respect my classmates and the integrity of this exam by following this honor code. I affirm:

- I have read the instructions for this exam. I understand them and will follow them.
- All of the work submitted here is my original work.
- I did not reference any sources other than my unlimited printed resources.
- I did not collaborate with any other human being on this exam.

PRINT your student ID:

2. Characterizing Components (13 Points)

Your lab TA has been exploring the 16A lab and discovered a bin of unlabeled components. She has collected some data about these mysterious components, and needs your help to interpret them.
(a) (3 points) She begins with a mysterious two-terminal component and labels it 'Component A'. After connecting it to one of the signal generators in the lab, she measures many voltage and current points forming an approximate I-V curve.

i. Which circuit element best describes Component A?ResistorVoltage Source
Open Circuit

Capacitor
Current Source
\bigcirc Short Circuit
ii. Paying careful attention to the measured units of current and voltage, express both the numeric value of the circuit element and its corresponding units (from the options provided).Volts (V)
\squareAmps (A)Ohms (Ω)Farads (F)
(b) (2 points) Your TA picks a different component out of the bin and labels it 'Component B'. She finds a corresponding datasheet which provides information on its structure and properties. It states that Component B is a parallel plate capacitor, which is physically modeled with three layers as follows:

Write an expression for the capacitance of Component B as a function of dielectric permittivity ε and dimensions D_{1}, L, and W.
\square
(c) (3 points) In the course of testing, your TA connected a large voltage source and put too much power through the capacitor. This resulted in the dielectric (the middle layer) breaking down, so that the entire three-layer device behaves like a resistor. After degradation, the device can be modeled as:

Write an expression for the resistance of Component B as a function of D_{1}, D_{2}, L, W, and resistivities ρ_{1} and ρ_{2}.
\square
(d) (5 points) Your lab TA decides to try characterizing one final component and labels it 'Component C '. She connects Component C to a circuit and measures the voltage across it and current through it as shown

From her measurement she finds that $I=-5 \mu \mathrm{~A}$ and $V=0.2 \mathrm{~V}$.
i. Is Component C labeled according to passive sign convention?YesNo
ii. What is the power dissipated by Component C

\square
iii. Is Component C consuming or generating power?

Consuming
Generating
iv. Regardless of your answers to the previous parts, assume Component C generates a constant $10 \mu \mathrm{~W}$ of power and is connected to a 1 mWh battery (a ' Wh ' or 'watt-hour' is a unit of energy). How long will it take to charge the battery from 0 to 100% capacity?

PRINT your student ID:

3. Can You Divide a Divider? (16 Points)

For all parts please give your answer in terms of the labeled circuit quantities. When expressing your answers, you are free to use the parallel (II) operator.
(a) (4 points) Consider the circuit below.

i. Find the voltage at node u_{B} as a function of V_{S}, R_{1}, and R_{2}.
\square
ii. How would you attach a voltmeter to check your answer for node voltage u_{B} ? Indicate the nodes (i.e., $u_{\mathrm{A}}, u_{\mathrm{B}}$, or u_{C}) you would connect to each voltmeter terminal. positive voltmeter terminal: \square negative voltmeter terminal: \square
(b) (4 points) Now consider a new circuit.

i. Find the voltage at node u_{2} as a function of $V_{\mathrm{S}}, R_{1}, R_{2}$, and R_{3}.
\square
ii. How does the node voltage u_{2} compare to the node voltage u_{B} in part (a)? Using 1-2 sentences, provide a conceptual reason for your answer.$u_{2}>u_{\mathrm{B}}$$u_{2}=u_{B}$
$\bigcirc u_{2}<u_{\mathrm{B}}$
(c) (8 points) Now consider a new circuit shown below. Assume the op-amp is ideal and in negative feedback.

i. Find an expression for the voltage at u_{3} as a function of $V_{\mathrm{S}}, R_{1}, R_{2}$, and R_{3}.
\square
ii. How does the node voltage u_{3} compare to the node voltage u_{2} in part (b)? Using 1-2 sentences, provide a conceptual reason for your answer.$u_{3}>u_{2}$
$\bigcirc u_{3}=u_{2}$$u_{3}<u_{2}$

iii. Find an expression for the voltage at u_{4} as a function of $V_{\mathrm{S}}, R_{1}, R_{2}$, and R_{3}. Your answer should NOT include any node voltages (i.e., u_{3})
\square
iv. Find an expression for the current I_{x} as a function of $V_{\mathrm{S}}, R_{1}, R_{2}$, and R_{3}. Your answer should NOT include any node voltages (i.e., u_{3}).
\square

PRINT your student ID:

4. Stacked Capacitors (11 points)

The parallel plate capacitor shown below is made up of two identical perfectly overlapping plates. The plates have length l, width w, are separated by distance d, and the dielectric material between the plates has permittivity ε. The capacitance formed by the two plates between nodes \mathbf{A} and \mathbf{B} is C_{0}.

(a) (3 points) Now assuming these same specifications, we stack 4 plates on top of each other. The plates are perfectly aligned vertically and the spacing between each plate is d. We connect node \mathbf{A} to the top and bottom plates and node \mathbf{B} to the middle two plates.

i. Is there capacitance formed between the 2 nd and 3 rd plates?

Yes
\bigcirc No
ii. Draw an equivalent capacitor circuit representing this physical arrangement of plates. Label nodes \mathbf{A} and \mathbf{B}.
(b) (2 points) From the capacitor configuration in part (a), we combine the two middle plates into a single plate. Assume all other specifications are the same as in part (a).
Find $C_{\text {eq }}$, the equivalent capacitance between nodes \mathbf{A} and \mathbf{B}. Express your answer in terms of C_{0} (the equivalent capacitance of just two plates).

\square
(c) (6 points) We want to charge up our stacked capacitor, $C_{\text {eq }}$, with a current source. Unfortunately our current source is non-ideal, and instead can be modeled by an ideal current source, I_{S}, and a resistor, R_{S}, in series. The capacitor $C_{\text {eq }}$ is uncharged at time $t=0$.

i. Find an expression for the power dissipated by resistor R_{S} in terms of $C_{\mathrm{eq}}, I_{\mathrm{S}}, R_{\mathrm{S}}$, and t.
\square

ii. Find the node voltage $u_{\mathrm{A}}(t)$ in terms of $C_{\text {eq }}, I_{\mathrm{S}}, R_{\mathrm{S}}$, and t.
\square
iii. Find an expression for the power delivered to the capacitor $C_{\text {eq }}$ in terms of $C_{\text {eq }}, I_{\mathrm{S}}, R_{\mathrm{S}}$, and t. The capacitor voltage V_{C} and current I_{C} are labeled for you.

Print your student ID:

5. A Plain Circuit ($\mathbf{1 6}$ points)

Consider the following circuit

(a) (3 points) Find the current I_{1} passing through the resistor R_{1} with the current source turned on and the voltage source turned off. Your answer must be only in terms of $I_{\mathrm{S}}, V_{\mathrm{S}}, R_{1}, R_{2}$, and R_{3}.
\square
(b) (3 points) Find the current I_{1} passing through the resistor R_{1} with the current source turned off and the voltage source turned on. Your answer must be only in terms of $I_{\mathrm{S}}, V_{\mathrm{S}}, R_{1}, R_{2}$, and R_{3}.
\square

(c) (2 points) Using the principle of superposition, find the total current I_{1} passing through the resistor R_{1} when both the current source and voltage source are turned on. Your answer must be only in terms of $I_{\mathrm{S}}, V_{\mathrm{S}}, R_{1}, R_{2}$, and R_{3}.
(d) (2 points) Redraw the circuit but with an ammeter added to measure the current I_{2}. Be sure to notate the direction of positive current for the ammeter.
(e) (4 points) Now you want to determine the equivalent circuit seen from the voltage source V_{S}. You remove the voltage source from the circuit. You also now know the numerical values of the current source I_{S} and resistances R_{1}, R_{2}, and R_{3}.

For this circuit, derive the Norton equivalent between nodes a and b. Find the Norton current, I_{no}, and the Norton resistance, R_{no}.

\square

(f) (2 points) For the circuit in part (e), select the line which represents the I-V characteristic at terminals a and b (i.e., I_{ab} vs V_{ab})?

PRINT your student ID: \qquad

6. Does The Circuit Blink? (17 points)

Consider the following circuit with an ideal op-amp

(a) (2 point) Is the op-amp configured in positive or negative feedback?Positive feedbackNegative feedback
(b) (2 points) If $I_{\mathrm{in}}=1 \mathrm{~A}$, then what is value of the current I_{1} ?

\square
(c) (2 points) If $I_{\mathrm{in}}=1 \mathrm{~A}$, derive the voltage at node u_{+}.

$$
u_{+}=\square \mathrm{V}
$$

\square

(d) (3 points) Determine the value of resistor R so that $V_{\mathrm{x}}=I_{\mathrm{in}} \cdot 5 \Omega$.

$$
R=\square \Omega
$$

\square
(e) (8 points) Now the input current $I_{\mathrm{in}}(t)$ has the following triangular waveform with time. Regardless of your answer to the previous parts, assume you have successfully implemented the function of the circuit: $V_{\mathrm{x}}=I_{\mathrm{in}} \cdot 5 \Omega$. Then the op-amp circuit can be represented with an equivalent circuit as shown.

Using the voltage V_{x} as an input, design a comparator circuit that creates an output voltage $V_{\text {out }}(t)$ alternating periodically between a low voltage -10 V and high voltage +10 V with equal durations. You do not have to use every element and you can use multiple of each element. If used, also specify your chosen values of R, C, and $V_{\text {ref }}$ for each element. Be sure to not leave any circuit element terminals unconnected.

$$
\begin{gathered}
\circ \\
+ \\
V_{\text {out }} \\
- \\
\hline \frac{1}{=}
\end{gathered}
$$

PRINT your student ID:

Extra page for scratchwork.
Work on this page will NOT be graded.

PRINT your student ID:

Extra page for scratchwork.
Work on this page will NOT be graded.

PRINT your student ID:

Extra page for scratchwork.
Work on this page will NOT be graded.

