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Part I

Introductory Content



Introduction

Welcome! I hope you find this book an effective and worthwhile way to help

learn the content in this course. This resource contains relevant equations, insights,

and information associated with each week’s content, solutions to the online practice

problem sets, and (at some point will hopefully also contain) other problems that I

create.

Each chapter in Online Practice Sets is associated with one of the online practice

sets, as found here. These chapters contain two sections: relevant information

and problems.

The relevant information sections will be condensed versions of the official

course notes (as found on the official course website). These sections serve merely

as a reference for what I believe are the most important concepts from each lecture.

Notably, these notes often do not contain the motivating context that make the

content interesting. I’ve made it more about the facts, certain useful insights that I

believe are critical to aid in visualization and broader understanding, and execution

of problem-solving techniques. In that sense, it is largely incomplete. Furthermore,

the notes will assume some familiarity with the course content at times, and are not
a substitute for attending lecture and discussion. Furthermore note that any concepts
introduced in this book but not covered in lecture or in the course notes are not valid for use
in an exam.

The problems sections will contain detailed explanations for each problem,

with the goal being to enable the reader to solve harder problems dealing with similar

concepts. See Conventions for more detail on how to best use these sections.

The goal in writing this text is to make a centralized source for the online practice

set solutions that assume little content familiarity, and are detailed enough that a

student can actually learn from the solution, rather than merely using it to reinforce

prior knowledge. A list of all parts, chapters, and sections are at the Contents for

quick navigation.

https://www.eecs16a.org/hw-practice.html
www.eecs16a.org


Conventions

Colors

Magenta: Internal clickable jump-reference to equation, figure, etc. or topic

header.

Red: Clickable hyperlink to external website/resource.

Orange: Answer. Just the answer, no frills.

Blue: Quick solution. Streamlined approach that often includes only the min-

imum necessary while still remaining complete. When there is no long solution,

this might include some insights beyond the strict scope of the problem-solving

techniques. Occasionally tells the reader to reference the long solution. Meant to be

used as a quick check of your work and approach.

Green: Long solution. Includes all steps except possibly when redundant from

quick solution or from previous problems. It contains much more insight and

intuition, and each step is more thoroughly explained. Occasionally redundant with

the quick solution. I recommend that everyone read these, even if you know

how to solve the problem. It may include another approach or ideas you haven’t

considered before but could be useful for exams where similar problems could arise.

Often also derives important concepts and points to useful places in the relevant

information sections.

Font Styles

small caps: Name of topic/header/subsection.

italics: primarily for chapter/section headings. When used in text,

indicates notes and ideas to pay extra attention to.

bold: Sparingly used in text as a subdivision/sub-header. In equa-

tions, almost always used for matrices.

typewriter

font:

Indicates matrix operations or properties including null-spaces

(null), column- or row-spaces (col or (row)), dimensions (dim),

REF, RREF, and range. For rank and determinant this style indi-

cates application of an operation (such as (rank(A) or (det(A)),

and not just a reference to the concept).
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Other Conventions/Shorthands

A
r×c

: As a convenient shorthand, when matrices or vectors have an expression

below them the form r × c, these are that object’s row × column dimensions.

here’s some content explaining a concept1: That small number is a margin note 1 this is a margin note for the content.

(see right)! If there’s relevant information that doesn’t fit into the flow of a solution,

or provides additional or out-of-scope context, I put it in a margin note.



Part II

Online Practice Sets



Practice Set 0: Systems of Equations

and Gaussian Elimination

Relevant Equations/Information

Properties of Scaling:

1. Scaling: Does scaling the input scale the output by the same amount?

f (αx) = α f (x) (1)

2. Superposition: Does applying a function to the sum of two (or more) input

variables have the same effect as if we applied the function to the inputs separately?

f (x1 + x2) = f (x1) + f (x2) (2)

3. The above two combined:

f (αx1 + βx2) = α f (x1) + β f (x2) (3)

Linear Function: A function mapping any number of inputs to an output is written

as f : RN → R. Here, f is some input → output mapping, taking a variable (or

multiple) and returning a value. If f is linear, then we can write it in the following

form:

f (x1, x2, . . . , xn) = α1x1 + α2x2 + . . . + αnxn (4)

That is to say, every linear function can be written as a scaled sum, or a weighted

average, of the inputs.2 2 The scalars αi are intrinsic to the function,
and do not depend on the specific values of
the inputs.Affine Function: An affine function has the following form:

f (x1, x2, . . . , xn) = K + α1x1 + α2x2 + . . . + αnxn (5)

Note the difference between affine and linear functions; there is additional constant

K here that does not scale with the input linearly. That is, multiplying the input by

some scalar will not affect the value of K, so the overall function does not satisfy

eq. (1). Only if K = 0 would the function be linear. Consider f (x) = x + 1; this

example demonstrates that even if a function looks like a line, it might not be linear.
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Linear Equation: If we have a linear function f : RN → R and some constant b,

then an equation of the following form is linear:3 3 Note the relationship between a linear
function and a linear equation. An affine
function is linear because we can move the
constant term K and group it with b as in
eq. (6). In this way, we "separate out" the linear
function from the constant term. Another
approach is to consider that eq. (6) is identical
to eq. (4) only if b = 0. These realizations are
important for the following questions.

f (x1, x2, . . . , xn) = b (6)

A system of linear equations is a collection of equations in this form.

Augmented Matrix Representation of a System: Given many linear equations,

we can use an augmented matrix as an equivalent representation for the system that is

easier to mathematically manipulate and solve. Take this system of linear equations:4 4 If you haven’t seen it before, =⇒ means
’implies’.

f1(x1, x2, . . . , xn) = b1 =⇒ α11x1 + α12x2 + . . . + α1nxn = b1

f2(x1, x2, . . . , xn) = b2 =⇒ α21x1 + α22x2 + . . . + α2nxn = b2

...

fn(x1, x2, . . . , xn) = bn =⇒ αn1x1 + αn2x2 + . . . + αnnxn = bn

Noticing that the variable names columns are redundant and the only differences

across equations are the coefficients, we convert the above, matching coefficients to

variables (columns), to the following augmented matrix form:
α11 α12 . . . α1n b1

α21 α22 . . . α2n b2
...

...
. . .

...
...

αn1 αn2 . . . αnn bn


Gaussian Elimination Procedure: We perform Gaussian Elimination on a system’s

augmented matrix representation to determine what its solution space looks like.

To perform Gaussian Elimination on any given matrix A
m×n

, follow the steps below.

There are 2 major parts: the forward pass (operations typically work "down" the matrix

rows) and the backward pass (which work "up" the matrix rows).

Forward Pass: For each row r of the total n starting at the top, perform the

following:

1. Swap row r with another row as needed so the leading entry is as far left as

possible.

2. Scale row r so that the leading entry5 is 1
5 The leading entry is the leftmost (nonzero)
entry in a given row of a matrix.

3. For each row below row r, add a multiple of row r so that all entries below the

leading entry of row r are equal to zero.
Backward Pass: For each row r of the total n starting at the bottom, add a

multiple of row r so that all entries above the leading entry of row r are equal to
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zero. After the forward pass, the matrix is in row-echelon form (or REF), and after

the backward pass, it is in reduced row-echelon form (or RREF6). For many kinds of 6 Interesting fact: each augmented matrix has a
unique RREF.

worked examples, please check the course notes.

Gaussian Elimination: Valid Operations: Here’s a valid list of elementary row

operations to perform on rows of a matrix during Gaussian Elimination:

1. Scale an entire row7 by some nonzero constant 7 Remember here that a row represents an
equation in the original system.

2. Swap two rows.

3. Add a multiple of one row to another.

Some Other Definitions:

• Pivot ≡ leading entry, these terms are used interchangeably.

• Basic Variable: variables corresponding to columns that contain leading entries in

the REF form.

• Free Variable: all other columns (not corresponding to basic variables).8 8 For example, in the matrices below, pivots are
circled in red, basic variables are in red text,
whereas free variables are in blue text.


x1 x2 x3 x4 b
1 2 3 4 5
0 1 3 4 5
0 0 1 4 5
0 0 0 1 5





x1 x2 x3 x4 x5 x6 x7 b
1 2 3 4 5 6 7 b1
0 0 1 4 5 6 7 b2
0 0 0 1 5 6 7 b3
0 0 0 0 0 1 7 b4
0 0 0 0 0 0 1 b5



• Consistent System (of linear equations): has at least 1 solution, infinitely many if

we have ≥ 1 free variable, and exactly 1 if there are no free variables.

• Inconsistent System: has no solutions. Identified by looking at the RREF form of

an augmented matrix corresponding to a system; if there’s a row of the form[
0 0 . . . 0 1

]
, the system is inconsistent. This is because such a row repre-

sents the equation 0x1 + 0x2 + . . . + 0xn = 1 =⇒ 0 = 1.

Problems

z Problem: Is the equation x + 2y = 4z linear?

Answer: Yes.

Quick Solution: First, we write the equation in the form f (x, y, z) = b. Here,
x + 2y− 4z = 0, and eq. (6) says that the equation is linear only so long as the
corresponding function on the left side is linear. To check that, we apply eq. (4); if we
pattern match (x = x1, y = x2, and z = x3), then our constants are simply α1 = 1,
α2 = 2, α3 = −4. We then have linearity by definition!

Long Solution: To check linearity of the function on the left side, we can also
perform a more rigorous analysis for completeness, so we know how to apply the
properties when unfamiliar questions arise.

A function is linear if it satisfies the properties of linearity, as in eq. (1) and
eq. (2) (summarized by eq. (3)). Here, the left hand side is:

f (x, y, z) = x + 2y− 4z
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If we rewrite each variable with a scaled and summed version of itself to match
the form of eq. (3), do we satisfy the properties? Let’s see:

(αx1 + βx2) + 2(αy1 + βy2)− 4(αz1 + βz2)
?
= α(x1 + 2y1 − 4z1) + β(x2 + 2y2 − 4z2)

αx1 + 2αy1 − 4αz1 + βx2 + 2βy2 − 4βz2
?
= α(x1 + 2y1 − 4z1) + β(x2 − 2y2 − 4z2)

α(x1 + 2y1 − 4z1) + β(x2 + 2y2 − 4z2)
3
= α(x1 + 2y1 − 4z1) + β(x2 + 2y2 − 4z2)

Make sure you understand why the first line is the primary question we ask in
determining linearity; the rest is rearranging terms and algebra. Indeed, we arrive
at an equality; the equation is linear.

z Problem: Is the equation sin(x)− 2 = 6 linear?

Answer: No.

Quick Solution: Simply put, applying eq. (4) and putting the given equation
in the form sin(x) = 8, we observe what makes this equation nonlinear: the
corresponding function on the left is nonlinear since the scaling factor for x is not
a constant.

Long Solution: See eqs. (1) to (3) for a summary on the properties of linearity.
In the form f (x1, x2, . . . , xn) = b, we have:

sin(x) = 8

Does the function on the left satisfy the relevant properties?

sin(αx1 + βx2)
?
= α sin(x1) + β sin(x2)

We can already see that the property will not hold for all choices of α, β, x1, and
x2. Instead of going through and applying the properties rigorously, invoking
sum-of-angle formulas and the like, we observe the following:

sin
(π

4
+

π

4

)
= sin

(π

2

)
= 1

whereas:

sin
(π

4

)
+ sin

(π

4

)
= 2 ·

√
2

2
=
√

2 [ 6= 1]

There are numerous counterexamples to dispute this equation’s linearity. Or,
you could simply have argued (accurately) that since sin(x) does not "look like a
line," the function couldn’t be linear.9 9 But beware of this sort of intuition in general;

when we get to more abstract concepts like
vector spaces and such, the properties and
definitions are far safer to rely upon.z Problem: Is the equation ∑50

i=1 i · x− e−3y = sin
(

π
3
)

linear?

Answer: Yes (perhaps surprisingly!)

Quick Solution: Once we see that the summation is just a fancy constant, the
exponential is another fancy constant, and the right side is also just a constant, the
form matches eq. (6) closely. From there, we apply eq. (4) to the left side, and note
that since the left is a linear function, the equation is also linear.

Long Solution: This equation may seem intimidating, and its sheer complexity
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and notation may lead one to incorrectly say that it isn’t linear. But let’s break it
down using the properties we know.

First, the right-hand side is just a constant (taking the sine of some angle), so
that’s taken care of. We also have a constant (e−3) scaling y. Now what about this
summation?10 We just add all the numbers from 1 to 50 and whatever that ends 10 The notation is a bit ambiguous as to

whether we have
(

∑50
i=1 i

)
· x or ∑50

i=1(i · x), but
it actually doesn’t matter.

up being,11 we scale x by that value.

11
1275 if you’re curious but it also doesn’t

matter for establishing linearity.

Let’s invoke eq. (4) on the left side of the equation. The function on the left is
linear and we just have a constant on the right, so according to eq. (6), we have a
linear equation!

z Problem: Write the following system of equations in matrix form:{
2x− 3y = 1
3x + y = −2

Answer: [
2 −3
3 1

] [
x
y

]
=

[
1
−2

]

Quick Solution: We simply match coefficients to variables and observe the
underlying matrix-vector structure. The system looks very similar to the A~x =~b
form, and for good reason.

Long Solution: We note that the form of a matrix equation representing a linear
system of equations is as follows: A~x = ~b, where A is the multiplying matrix
that contains all the coefficients, ~x is the vector containing the unknown variables
x1 . . . xn, and~b is the output vector containing the values that each row of summed
and scaled variables evaluates to.

Each row in the A matrix corresponds to the coefficients for one equation, and
the variables they multiply can be found in the ~x vector. Here, the expectation is
to be able to pattern-match. As a quick sanity check, if it isn’t evident that the
−3 coefficient scales the variable y for the first equation, then it will likely help to
wait until we get to the mechanics of matrix multiplication. A simple formula is
found in eq. (7), and the more generalized treatment of matrices vectors can be
found in the course notes.12 12 Note an important fact about this ma-

trix/vector representation of the given system
and the linear system of equations itself: these
are not merely different notations, they are
actually exactly equivalent. Be comfortable
going from one form to the other, initially on
paper, and eventually in your head.

z Problem: Is it true or false that a system of 3 equations with 2 free variables has
solutions along a line?

Answer: False. They lie on a 2D plane.

Quick Solution: Since there are 2 free variables, we effectively have 2 degrees of
freedom (in being able to arbitrarily vary those two parameters and still satisfy
the system of equations). A line would imply 1 degree of freedom; a plane
encompasses 2.

Long Solution: What does it mean for a system of equations to have a free
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variable? It means that variable doesn’t add any constraints on the solutions to
that system. Said another way, no matter what the value of a free variable is, the
values of the other (basic or constraining) variables will determine what the solution
space looks like for the system.

In this case, we have 3 equations, and we know 2 of the variables involved are
free. The remaining variables are basic, which means that they have specific values
set by the system of equations because they determine the set of solutions. We
can vary one free variable along an infinite line and vary the other free variable
along a different line; these two lines define a plane. Because we can vary both free
variables however we’d like and still have a solution to the system, the solution
space would not be a line, which is a 1D object (only 1 degree of freedom). We
actually have the next higher dimension object13 as our solution space, which is a 13 Nuance for the interested: The set of solu-

tions will always be a plane, since 2 of the
variables are free. But one question is, what
dimension of space does the plane lie in? This en-
tirely depends on the number of total variables
in the system’s equations. In a simple case,
we may have 3 total variables, so we have a
2D plane in 3D space. If we have 5 variables,
though, we have a (much harder to visualize)
2D plane residing in 5D space!

plane.

Something to note; based on the fact that we have 3 equations and 2 free
variables, what is the maximum number of total variables we can have in this
system? Each variable is either basic or free. Basic variables correspond to columns
containing pivots, and note that each pivot can be thought of as belonging to both
a row and a column. With 3 equations, we have only 3 rows; this means that
we can have no more than 3 pivots (and 3 basic variables). Including our 2 free
variables from before, this means the total variable count is capped at 5.

z Problem: We have the following row-reduced augmented matrix, obtained by
performing Gaussian Elimination. How many solutions does the underlying
system have? [

3 −1 2 1
0 0 2 1

]
Answer: ∞

Quick Solution: We note that there is a free variable (x2) in the system, so we
have an infinite number of solutions.

Long Solution: Call the variables x1, x2, and x3. The last row indicates that x3

has a unique, defined value: 2x3 = 1 =⇒ x3 = 1
2 . Now, given x3, we plug its

value into the top row (3x1− x2 + 2x3 = 1) and find that 3x1− x2 = 0, or 3x1 = x2.
We have a free variable, and the system has infinitely many solutions (one for each
value of the free variable). Note that if we select a value for either x1 or x2, the
value for the other variable is automatically determined, so we have only 1 free
variable, not 2.

Alternate Solution: Note that we can go one step further and convert this
matrix to RREF. We then note that columns containing leading entries correspond
to basic variables, and the rest contain free variables. So we convert:[

3 −1 2 1
0 0 2 1

]
−→

[
1 − 1

3 0 0
0 0 1 1

2

]
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Note that columns 1 and 3 have leading entries, and column 2 doesn’t. So we
arrive at the same conclusion, that the system has infinite solutions because x2 is a
free variable.

z Problem: We have the following row-reduced augmented matrix, obtained by
performing Gaussian Elimination. How many solutions does the underlying
system have? (Note: this is similar to the question with a slightly different matrix.)

[
3 −1 2 1
0 0 0 1

]
Answer: None

Quick Solution: Note that the last row represents an impossible equation.
0x3 6= 1 no matter what value of x3 we select! Therefore, we can conclude
immediately that the system is inconsistent and has no solutions.

z Problem: Is it true or false that a system of equations with more equations than
unknowns will always have either infinitely many solutions or no solutions?

Answer: False

Quick Solution: A simple counterexample is as follows:{
x = 1

2x = 2

We have 2 equations, 1 unknown, and only 1 solution.

Long Solution: To approach these kinds of questions, it’s best to consider what
kind of edge cases to consider, and what the relevant definitions are. Here, one
may be tempted to say that because each equation adds information and we have
more "pieces of information" than the number of variables we need values for, that
the system is over-determined and has infinite solutions.

But what if every equation we have looks like 0x1 = 1, 0x2 = 2, etc? Then we
can have no solutions. But the key realization to make is that some equations may
not add anything new to the system. Consider the counterexample given in the
quick solution above; the second equation is exactly the same as the first except
for a scaling factor, so we effectively only have 1 combined piece of information.
This idea of redundancy will be discussed much more thoroughly in the sections
on linear dependence and independence.

z Problem: Perform Gaussian Elimination (explicitly, using an augmented matrix)
on the following system of equations to find x, y, and z.

10x− 6y + 2z = 2
3x + 2y = 10
−5x + 3y− z = 1
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Answer: No solution.

Quick Solution: In performing Gaussian Elimination on the associated matrix,
we arrive at an impossible equation. Check the long solution for details!

Long Solution: Here we go! Let’s follow the Gaussian Elimination Algorithm
steps.

* First, we put the system into augmented matrix form:

 10 −6 2 2
3 2 0 10
−5 3 −1 1


* Next, we begin applying row operations.14 14 If you’d like to see the entire set of steps

until full RREF, or want to experiment with
other variations on this problem, please make
cautious use of this link. Beware that it has at
least one known bug that I’ve experienced, so
its accuracy is not guaranteed.

1
10

R1 → R1 =⇒

 1 − 3
5

1
5

1
5

3 2 0 10
−5 3 −1 1


R2−3R1→R2
R3+5R1→R3

=⇒

1 − 3
5

1
5

1
5

0 19
5 − 3

5
47
5

0 0 0 2


* At this point, we notice that the last row is an impossible equation and implies

the system was inconsistent to begin with. Therefore, the system has no
solutions.

z Problem: Solve the following system of equations for x, y, and z:
2x + y + 3z = 1

x− y + 4z = 2
x + 8y + z = 1

Answer: x = − 5
9 , y = 1

9 , z = 2
3 .

Quick Solution: Standard Gaussian Elimination, with a unique solution at the
end. Check the long solution for details!

Long Solution: No requisite solving method is specified here, so one could
simply use back-substitution without involving matrices at all. But for practice,
we show the method involving Gaussian elimination:

We repeat the same steps that we carried out above:

* Put the system into augmented matrix form:

2 1 3 1
1 −1 4 2
1 8 1 1


* Apply batches of row operations:15 15 Alright, fine, I’ll stop including these drawn-

out matrix operations. Last time, promise!

1
2

R1 → R1 =⇒

1 1
2

3
2

1
2

1 −1 4 2
1 8 1 1



https://lin-matrix.herokuapp.com/
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R2−R1→R2
R3−R1→R3

=⇒

1 1
2

3
2

1
2

0 − 3
2

5
2

3
2

0 15
2 − 1

2
1
2


− 2

3 R2→R2

R3− 15
2 R2→R3

R3
12→R3

=⇒

1 1
2

3
2

1
2

0 1 − 5
3 −1

0 0 1 2
3


R2+

5
3 R3→R2

R1− 3
2 R3→R1

R1− 1
2 R2→R1

=⇒

1 0 0 − 5
9

0 1 0 1
9

0 0 1 2
3


* Now we read our solutions off the right column directly! x = − 5

9 , y = 1
9 , and

z = 2
3 .

z Problem: Solve the following system of equations for x, y, and z:
2x− 16y + 4z = −8

x + 12y + 4z = 6
x + 8y− 2z = 4

Answer: x = 0, y = 1
2 , z = 0.

Quick Solution: If we’re really perceptive (and a bit lucky), we notice that the
final values depend only on the value of y (the~b values are each exactly half the
coefficient that scales y in each equation). But beyond that, we need to go through
and do a more complete analysis.

Long Solution: Instead of doing it out step-by-step, I’ll simply include the REF

and RREF matrices below, and refer you to the previous 2 problems for the general
procedure, which applies here as well. Note that if you prefer to stop at REF (rather
than going all the way to RREF16) and back-substitute manually to get the final 16 In some circles, you may hear that REF is

obtained with Gaussian Elimination and
RREF is arrived at through Gauss-Jordan
Elimination. In this course, the naming
distinction doesn’t matter.

values, that’s fine (so long as an exam doesn’t specify a method!) Practice will
reveal which approach is fastest and most accurate for you.

REF =

1 −8 2 −4
0 1 1

10
1
2

0 0 1 0


RREF =

1 0 0 0
0 1 0 1

2
0 0 1 0





Practice Set 1: Matrix Operations and
Linear Dependence

Relevant Equations/Information:

Matrix Multiplication: aij is the entry in row i, column j. Remember the multi-

plication of matrices
[

A
m×n
× B

p×q
= C

m×q

]
is only defined if n = p. Below, we show a

simple 2 × 2 example to illustrate the concept.a11 a12

a21 a22

b11 b12

b21 b22

 =

a11 · b11 + a12 · b21 a11 · b12 + a12 · b22

a21 · b11 + a22 · b21 a21 · b12 + a22 · b22

 (7)

Matrix-Vector Multiplication: Multiplication of a vector by a matrix can be

thought of as a linear transformation of that vector, very similar to a linear func-

tion. Whereas we previously dealt with f : RN → R, taking any number of inputs

(which can be represented as the elements of a vector) and returning a single value,

we now have the more general f : RN → RM which similarly takes any number

of inputs but can now return any number of outputs (of course, the dimensions of

A have to be compatible with the transformation.) Linear transformations follow

certain properties; recall eqs. (1) to (3).

Matrix-Vector Column-Wise Formulation:17 17 For a more complete/generalized treatment
of matrices, vectors, and more, including
several important properties, see the course
notes.

For A
m×n
× ~x

n×1
= ~b

m×1
:

bi =
n

∑
j=1

aijxj

In this way, we can interpret the A~x product in the context of A’s columns:

A~x =


a11x1 + a12x2 + · · ·+ A1nxn

a21x1 + a22x2 + · · ·+ A2nxn
...

am1x1 + am2x2 + · · ·+ Amnxn

 = x1


a11

a21
...

am1

+ x2


a12

a22
...

am2

+ · · ·+ xn


a1n

a2n
...

amn


(8)

Linear Dependence: Linear Dependence is a concept used to characterize the
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amount of redundancy in a given set of information. It is very closely tied to the idea

of free and basic variables as we’ve already seen, and forms the basis (pun intended)

for a large number of important concepts going forward. We present 3 equivalent

definitions for Linear Dependence below.18 18 It might seem like they’re saying the same
thing, but it’s worth keeping each individual
form in mind.1. A set of vectors {~v1, . . . , ~vn} is linearly dependent if there are corresponding

scalars α1, . . . , αn such that:

α1~v1 + · · ·+ αn~vn =~0 (9)

However, not all αi’s can be zero; this combination of all-zero scalars has a special

name: the "trivial solution."

2. Vectors ~v1, . . . , ~vn with associated scalars α1, . . . , αn are linearly dependent if, for

some index i, we have that ~vi = ∑j 6=i αj~vj. 19 That is, a set of vectors is linearly 19 The ∑ symbol is shorthand for addition.
α1~v1 + · · ·+ αn ~vn can be written as ∑n

i=1 αi~vi
or ∑i αi~vi . In this instance, ∑j 6=i αj~vj is the sum
over all αj~vj excluding the αi~vi term.

dependent if one of them can be "composed" by linearly combining some/all of

the other vectors.

3. A set of vectors is either linearly dependent or linearly independent. More

specifically, consider the sum in eq. (9). If there is a solution to satisfy this equation

other than to make all the scalars α1 = · · · = αn = 0, (that is, a nontrivial solution)

then the vectors are linearly dependent.

Span: Informally, the span of a set S of vectors (which is the only context it really

makes sense to talk about span, with edge cases being potentially empty or single-

vector sets) is the set of all vectors that can be reached using vectors in S. More

formally, it is the set of all linear combinations of vectors in S. How do we get all

these combinations? By considering all combinations of αi! We already have the

notion of various αi scaling the vectors in a set {~v1, . . . , ~vn}. We simply formalize

this:

span(S) = span(v1, . . . , vn) =

{
n

∑
i=1

αi~vi | αi ∈ R

}
(10)

This can be hard to understand without a visual, so let’s take a look at a simple

2D example to clarify. If we have a single vector ~v1 =
[

1
2
]
, what’s our span? It’s all

vectors that are scaled versions of ~v1.
[

0.5
1
]

is in the span (α1 = 0.5), as is
[

0
0
]

for

(α1 = 0) and
[

3
6
]

for (α1 = 3). But
[

0
2
]

and
[ −1

0

]
are not in the span. Simply put,

anything on the infinite line passing through ~v1 is in the span; anything else isn’t.

fig. 1 to the right clarifies with some more example points.

x

y

~v1
7

7

7

7

7•

•

•

•

Figure 1: Demonstration of a simple example

involving span. Notice the 7 points are not in

the span of ~v1, whereas the • points are.
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Problems

z Problem: Given the following matrices, A and B, what is the first row of the
product C = AB?

A =

 1 5 0
10 3 7
6 4 11

B =

2 12 3
1 8 0
9 1 2



Answer:
[
7 52 3

]
Quick Solution: We apply eq. (7) and find that:

c1i = ~ar1 ~bci

(dot product of first row of A and i’th column of B). Computing, we find the top
row of the resulting matrix is:

[
7 52 3

]
Long Solution: The first row consists of 3 entries, c11, c12, and c13 with cij being
the entry in the i’th row and j’th column. Let’s explicitly write out each entry
using eq. (7):20 20 Note the dimensions match based on this

notation ((1× 3) · (3× 1)) and each dot product
is valid, yielding a single scalar value.c11 = a11b11 + a12b21 + a13b31 = (1× 2) + (5× 1) + (0× 9) = 7

c12 = a11b12 + a12b22 + a13b32 = (1× 12) + (5× 8) + (0× 1) = 52

c13 = a11b13 + a12b23 + a13b33 = (1× 3) + (5× 0) + (0× 2) = 3

Combining, we get
[

7 52 3
]
.

z Problem: Is (~x +~y)A equivalent to A(~x +~y) where ~x and ~y are column vectors in
Rn and A is an n× n matrix?

Answer: No, the dimensions only match for A(~x +~y) .

Quick Solution: One of the expressions isn’t a valid multiplication! Since ~x
and ~y are column vectors, they have dimensions n× 1. A(~x +~y) is valid since
(n× n) · (n× 1) yields an n× 1 column vector. This matches the A~x =~b form. The
other expression is (n× 1) · (n× n); note the inner dimensions don’t match, so we
cannot form the vector-matrix product.

z Problem: Is it true or false that if A2 = 0, the zero matrix, then A = 0?

Answer: Technically, depends on the dimensions of A. False except in the case of
a 1× 1 matrix (edge case).

Quick Solution: One approach is to form the counterexample A =
[

0 1
0 0
]

and
observe that the product is zero but the matrix A itself isn’t. But in the case of a
1× 1 matrix, if A2 = 0, then A = 0. So, the answer depends on the dimensions of
A.21 21 If you solved this question and arrived at

False, know that this was the intended answer.
Disregarding the 1× 1 case (often thought of as
a scalar rather than a matrix) was an oversight,
so the solution on the site is wrong.
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Long Solution: This question is difficult to solve rigorously for arbitrary dimen-
sions,22 but observe the following: Each entry of the resulting matrix product A2 22 The quick solution addresses the edge

case of a 1× 1 matrix, so we now deal only
with 2× 2 or larger matrices.

comes from the dot product of a row and column in the original matrix. A dot
product can be zero for many reasons; one of the individual vectors is entirely
zero is the most basic case but any combination of values where the sum of
multiplications is zero will yield a zero dot product.

The general realization that the matrix A doesn’t need to be zero in order for
A2 to be zero comes from the fact that a dot product can "produce zeros" from
nonzero inputs. This might be counterintuitive since in algebraic equations, if
one says xyz = 0, one of x, y, or z must be zero, but the logic doesn’t carry over.
Consider:

[
0 1 0 1 0

]


1
0
1
0
1

 = 0

The row-column dot product is zero, but the individual rows indeed aren’t zero.
Also consider this example:

C =

 5 −3 2
15 −9 6
10 −6 4

 C2 =

0 0 0
0 0 0
0 0 0

 .

Try it yourself!23 23 For more on this kind of logic, check out
Nilpotent Matrices. Note that anything on
this page that is out-of-scope or not covered
in class notes may not be valid for use in an
exam.

z Problem: If A
4×4


0
1
0
0

 =


1
2
1
0

, what is the second column of A?

Answer:


1
2
1
0


Quick Solution: We isolate the second column of A with the single nonzero entry
in the vector on the left (if it isn’t clear why/how, check out the long solution.
So the result is simply the vector on the right.

Long Solution: This question gets at the heart of what it means conceptually to
do a matrix-vector multiplication. In an equation of the form A~x =~b each bi is the
inner product of Ari (i’th row of A) and ~x. But notice that the multiplying vector
here has a "sifting" property; it nullifies any entries in A that don’t match up to
the second entry.

Which entries of A always end up getting multiplied by 1? The ones in the
second column.24 Ultimately, if these are the only entries that get preserved in the 24 For great visualizations on this "mapping,"

check out the course notes.sifting, then~b entirely consists of entries from Ac2. So we directly know what the

https://en.wikipedia.org/wiki/Nilpotent_matrix
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second column of A is.

z Problem: The effects of a fighter jet performing a Barrel Roll, an Immelman, or
a Nose Dive can be represented by matrices A, B, and C, respectively. The jet’s
current state is represented by ~x. What expression describes the jet’s state after
the pilot does a Nose-Dive, Barrel Roll, and Immelman, in that order?

Answer: BAC~x

Quick Solution: We compose the given operations (C, A, B) by left-multiplying
the state vector by the matrices in order, and we arrive at BAC~x.

Long Solution: Matrix-vector operations that represent some transformation
of a state are carried out as a left-multiplication of the state vector (in this case
~x) by the matrix to get the state after the operation. Here, we first perform a
Nose-Dive, so we left-multiply ~x by C to get C~x. We then perform a Barrel Roll,
so we left-multiply C~x by A to get AC~x. Finally, we left-multiply AC~x by B
(Immelman) to get the final state vector: BAC~x.

z Problem: Are the vectors~a and~b below linearly independent?

~a =

[
4
3

]
~b =

[
−1
2

]

Answer: Yes.

Quick Solution: There are only two vectors, and neither is a scaled version of
the other. So they are linearly independent.

Long Solution: For this small example, even the long solution isn’t that long.
But to be more rigorous, we can check if we satisfy eq. (9); that is, can any scalars
α1, α2 can be found such that α1~a + α2~b = 0? We formulate this question as:

α1

[
4
3

]
+ α2

[
−1
2

]
= 0

{
4α1 − 1α2 = 0
3α1 + 2α2 = 0

Solving using standard techniques (substitution, Gaussian elimination, whatever
you prefer), we find that α1 = α2 = 0. In other words, by our 3rd definition of
linear dependence, we only have the trivial solution (no nontrivial solution), so
the vectors are linearly independent.
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z Problem: Are the vectors~a,~b, and ~c below linearly independent?

~a =

 2
2
−1

 ~b =

1
6
2

 ~c =

−1
0
1


Answer: No.

Quick Solution: We can find that 3~a−~b + 5~c = 0, and since this is a nontrivial
solution to eq. (9), the vectors are linearly dependent.

Long Solution: As before, we set up the corresponding system of equations:

α1

 2
2
−1

+ α2

1
6
2

+ α3

−1
0
1

 = 0


2α1 + α2 − α3 = 0
2α1 + 6α2 = 0
−α1 + 2α2 + α3 = 0

And we solve! The solution to this system is α1 = 3, α2 = −1, α3 = 5. And since
this is a nontrivial solution, the original vectors are linearly dependent.

z Problem: For some matrix A, A~x1 = ~b and A~x2 = ~b, where ~x1 6= ~x2. Are the
columns of A are linearly independent, or does it depend on the specific matrix?

Answer: No, the columns are linearly dependent.

Quick Solution: We notice that A~x1 −A~x2 = A(~x1 − ~x2) =~b−~b = ~0. That is,
~0 is a linear combination of the columns of A. So these columns, by eq. (9), are
dependent.

Long Solution: This question tests your conceptual understanding of matrix-
vector multiplication, with the added nuance of considering linear dependence.
Previously, we’ve considered how each entry in the result,~b, arises from multiply-
ing a row in A by ~x1 or ~x2. But there’s another perspective on the same idea which
allows us to view the composition of the A~xi product in terms of the columns of
A.

We saw a hint of this in the two previous questions; notice how we had scalars
multiplying column vectors, which we then added together and set equal to
~0. When there is a nontrivial solution, these columns were found to be linearly
dependent, and if there was only the trivial solution, the columns were linearly
independent.

Now, we have that A~x1 −A~x2 = A(~x1 − ~x2) =~0, but let’s take a closer look at
why exactly this says anything about the columns of A. We can give the difference

between ~x1 and ~x2 a name ~δx =


δ1
...

δn

. Because ~x1 6= ~x2, there must be some
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nonzero entries in ~δx (not all δi’s = 0).

Let the columns of A be ~ac1, . . . , ~acn. Then, notice that according to eq. (8), we
can say that A~δ = ∑n

i=1 δi ~aci = ~0. If this step doesn’t make sense, please review
the expansion of the A~δ (or A~x) product.

Then, we can conclude by eq. (9) (as we often seem to do) that the columns of
A are linearly dependent.

z Problem: Is ~v below in the span of the vectors listed?

~v =

 1
−1
1

 span =


0

0
1

 ,

1
2
1

 ,

 2
4
−1




Answer: No.

Quick Solution: Notice that we cannot express ~v as a linear combination of the
vectors in the given set, which, by definition in eq. (10), means ~v is not in the span.
But this example is not so trivial that we can visually see it immediately; to show
this, we carry out Gaussian elimination of the matrix A:

A =

0 1 2 1
0 2 4 −1
1 1 −1 1

 (11)

and show there is no solution.

Long Solution: Why does the approach above work? To learn to perform
Gaussian Elimination as a procedure to solve equations like A~x =~b takes hours;
to visualize and understand the underlying concepts can take months or more.

We must start with the fact that the vectors in the span can be thought of as

the columns of a matrix A =

 | | |
~ac1 ~ac2 ~ac3

| | |

. Remember eq. (8)? Well, that’s

exactly the interpretation we need! Each of these vectors is a column in the matrix,
which as a whole represents a transformation in space. We saw a hint of this in the
relevant information section, but now go into more detail.

When we say that A~x = ~x′, it can be seen as the vectors effectively taking a
point (x, y, z) and mapping it to some other point (x′, y′, z′). And we can do this
for any of the infinite number of points in 3D space. These coordinates are now
our scalars! The location of a point determines where it gets mapped to by the
transformation.25 25 Note that if we had more or less vectors of

greater or smaller length, this transformation
would be "cross-dimensional" (mapping a 3D
point to a 5D point or something similar) but
we omit this consideration for now.

Overall, then, our goal is to figure out what coordinates (x, y, z) are mapped
to ~v (the "head" or arrow-part of which is at point (1,−1, 1))26 by A. We can

26 The point at the head of a vector and the
vector itself practically synonymous in most
cases, since the tail almost always resides at
the origin.

have no such points (no solution), a unique point (unique solution), or infinitely
many points (infinitely many solutions). Now, we already know how to solve an
equation of the form A~x = ~x′; we know A and ~x′, so we can figure out what ~x
is. Hopefully it’s clear now that when we solve the augmented matrix in eq. (11),
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we are trying to find this starting point. When we come to the conclusion of no
solution (try this yourself to confirm!), it means there is no such starting point!
That is, no matter where in 3D space we try to start in order to map to ~v using
this transformation, we fail. So the transformation represented by these vectors is
incapable of taking us to ~v; ~v is not in the span of the given vectors.

z Problem: Given ~v1 and ~v2, select all of the following options that are equivalent
to span(~v1, ~v2):

1. span(~v1, ~v1 + ~v2)
2. span(~v1)
3. span(~v1, ~v1 − α~v2)
Answer: 1. and 3.

Quick Solution: If we only have ~v1, we lose "additional reach" given by ~v2. So
option 2 is not a good substitute. But the others will still work since we can still
reach any of the vectors in our original span; we may simply have to pick different
scalars.

Long Solution: When it comes to spans, we can select whatever linear combi-
nation of the given vectors we want (any choice of scalars α1 and α2). So, in the
original span, say we select α1 scaling ~v1 α2 scaling ~v2. For the first option, an
equivalent choice of scalars is α′1 = α2 − α1 scaling ~v1

′ = ~v1 and α′2 = α2 scaling
~v2
′ = ~v1 + ~v2. That is, the spans are the same. A very similar argument holds for

option 3, except for slightly different values for each α.

However, in option 2, we actually lose information by only having ~v1 in our
span as opposed to both ~v1 and ~v2. Consider a simple example where we say each

vector resides in 2D space27: ~v1 =

[
1
0

]
and ~v2 =

[
0
1

]
. The span of just ~v1 is just 27 Note the problem never said anything about

the dimension of the vectors themselves;
we assume two-dimensionality for visual
simplicity.

the x-axis, but the span of both vectors is all of 2D space. See fig. 2 for a visual aid.

x

y

~v1

~v2

7

Figure 2: Notice that ~v1 does not encompass
the entire span of (~v1, ~v2). For example,
without ~v2, how would one get to 7 at (2.5,
2.5)?



Practice Set 2: State Transition Matri-
ces and Inverses

Relevant Equations/Information

Linear Transformation: In the previous practice set, we discussed the idea of a

matrix A
m×n

as a linear transformation. Effectively, in the equation A~x =~b, the matrix

itself can be considered a transformation f : RN → RM which takes a vector ~x
n×1

of

inputs and returns a vector ~b
m×1

of outputs (convince yourself the dimensions listed

make sense).

In this way, we can think about matrices as state transformations; if we have a

list of inputs representing some current state at some timestep n (given by ~x[n]), then

when a matrix A operates on that state, it transforms it into a new state at the next

time step (~x[n + 1]). Consider a timestep to be a very small unit of time. Our systems

here will be discrete, meaning that the transition of water happens exactly at each

timestep, and not between timesteps.28 28 But in reality, water is flowing continuously!
To model this rigorously, we need linear
differential equations, but for now, if the
timestep we take is very small, the discrete
model is quite good as an approximation.

P1 P2

0.3

0.5
0.50.7

Figure 3: The movement of water in this 2-

node system of pumps can be represented by

this matrix, following the general formula in

eq. (12): [
0.7 0.5

0.3 0.5

]

It’s best to consider this idea with a classic example; water pumps. Take a look

at the basic example in fig. 3 and the more involved example in fig. 4. At each time

step, some portion of the water in each pump goes to itself, and some portion goes

to each of the other pumps. The general state transition matrix formula for an n-state

system (assuming the initial and final state vectors have the same length n) is as

follows: 
P1→1 P2→1 . . . Pn→1

P1→2 P2→2 . . . Pn→2
...

...
. . .

...

P1→n P2→n . . . Pn→n

 (12)

P1

P2

P3

P4

0.4

0.1

0.2

0.3

0.1

0.2

0.3

0.4
0.4

0.1

0.2

0.30.1

0.4

0.2

0.3

Figure 4: A more involved 4-node state

transition example. Yup, it gets messy!

Following the general formula in eq. (12):
0.4 0.1 0.4 0.1

0.1 0.2 0.1 0.4

0.2 0.3 0.2 0.2

0.3 0.4 0.3 0.3



Conservation: Notice that in the examples in figs. 3 to 4, all of the water goes

somewhere and none comes up out of thin air; that is, the water is a conserved quantity.

We don’t have any leakage or generation of water in the system. Note that this isn’t
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always the case (one could create a state transition matrix describing a single US

state and its towns, but people can then travel in and out of the system). The idea of

conservation will largely hold true, especially for systems based in physical reality.

How can we easily look at a state transition matrix and check if the corresponding

system deals with a conserved quantity? Well, from eq. (12), we see that each column’s

values describe the movement of water from a specific node to other nodes. If any

column’s values do not sum to exactly 1, then something is being lost or created

in the system as a whole. In addition, if a specific column’s sum is greater than 1,

matter is entering the system through that node; conversely, if a specific column sum

is less than 1, matter is leaving the system through that node.29 29 Given information about only a single
node’s column sum, we can never definitely
say if the overall system is conservative or
not; we only know if it might be conservative,
based on other nodes.

Diagram → Matrix: Given a state transition diagram, we can create the corre-

sponding state transition matrix by reading the values at each arrow, noting the

directionality (these are directed edges) and populating the rows one by one. Similarly,

given a matrix, we can draw the appropriate number of nodes and label arrows going

to/from each node with the values as indicated by the matrix.

Conceptual Meaning of a Matrix Inverse: If a matrix A as a linear transformation

tells us how to get from ~x[n] to ~x[n + 1], then A−1 tells us how to get from ~x[n] to

~x[n− 1].

But we must be careful! The inverse of a matrix is only defined for square matrices,

and even then, it doesn’t always exist. When the inverse exists in the context of state

diagrams, it means that if we know what the state is a some time step, then we know

what it looks like at the previous timestep. By induction30, we can figure out what 30 If you don’t know what induction is, don’t
worry too much, it’s a CS70 topic. It basically
means that if multiplying our state by an
inverse gives us the state 1 timestep before,
then we can keep repeating this process and
multiplying our state by the inverse n times
gives us the state n timesteps before.

the state looks like at all previous time steps!

Mathematical Definition of a Matrix Inverse: The inverse of a matrix A (call it

B), if it exists, is the matrix such that AB = I (in which case BA = I). Knowing how

to express the definition in both ways can come in handy in proofs.

Notice we said the inverse, rather than an inverse; if the inverse exists, it is

assuredly unique.31. 31 See the course notes for a proof of this
statement.

Inverse for a 2× 2 matrix:32
32 I highly recommend you go through the
process described below and reduce eq. (14) to
eq. (15) to see how this result is derived.

A =

a b

c d

 =⇒ A−1 =
1

ad− bc

 d −b

−c a

 (13)
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Inverse for an n × n matrix (using Gaussian Elimination): Start with the

augmented matrix of the form in eq. (14) and perform Gaussian Elimination on the

left side (carrying the operations along on the right side) until arriving at eq. (15).33 33 Note that a−1
11 is not the reciprocal of a11;

rather, it is the first row, first column element
of A−1. A In

 =



a11 a12 . . . a1n 1 0 . . . 0

a21
. . .

... 0 1 . . . 0
...

. . .
...

...
...

. . . 0

an1 . . . . . . ann 0 0 . . . 1


(14)

 In A−1

 =



1 0 . . . 0 a−1
11 a−1

12 . . . a−1
1n

0 1 . . . 0 a−1
21

. . .
...

...
...

. . .
...

...
. . .

...

0 0 . . . 1 a−1
n1 . . . . . . a−1

nn


(15)

Intuition Behind Inverses (Using Vectors): In cases where several distinct input

vectors can be mapped by the transformation matrix to the same output vector, an

inverse cannot exist. Consider why: we have already said that if we do have an

inverse, it is unique, and we can use it to find the input given some output. But

here, we are explicitly saying that the output vector could have resulted from more

than 1 input vector! That is, we do not know which "backwards branch" to follow.

Therefore, we summarize: if A can map two distinct input vectors ~x1 and ~x2 to the

same output vector~b, A−1 cannot exist. Observe the example in fig. 5.

x

y

~x1

~x2

~b

Figure 5: Both vectors ~x1 =
[

0
1

]
and ~x2 =

[
3
0

]
,

when transformed by A below, yield the same

output vector~b =
[

3
6

]
, so A−1 cannot exist.

A =

[
1 3

2 6

]

Try it! You should find that the left side cannot

be reduced to the identity matrix, and we

reach a row of zeros, so the inverse cannot

be found. Or using formula eq. (13), we end

up dividing by zero on the fraction outside

the matrix, also indicating the inverse doesn’t

exist.

Inverse: Connection to Linear Dependence: If A is invertible (that is, A−1 exists),

then the columns of A must be linearly independent. Conversely, if a square matrix

A has linearly dependent columns, it is not invertible. This can be seen in the matrix

A in the caption of fig. 5, for example.34

34 See course notes for a proof!Problems

z Problem: Let the state transition matrix A below represent people moving between
3 cities. If the starting state is ~x[0], find ~x[1].

A =

0.5 0.3 0
0 0.5 1

0.4 0.2 0

 ~x[0] =

100
200
100


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Answer: ~x[1] =

110
200
80


Quick Solution: By definition, A describes how the system changes from one
step to the next. We’re given info about the (input) state at t = 0, and want info
about the (output) state at t = 1. To compute the output after the transformation,
we multiply ~x[0] by A on the left:0.5 0.3 0

0 0.5 1
0.4 0.2 0


A

100
200
100


~x[0]

=

110
200
80


~x[1]

Long Solution: The quick solution is the natural approach here, but alterna-
tively, for a small example, it is also possible to appeal to the physical meaning
of eq. (12): City 1 gets 50% of itself, 30% from City 2, and nobody from City 3

[= 50 + 60 + 0 = 110]. City 2 gets nobody from City 1, 50% of itself, and all of
City 3 [= 0 + 100 + 100 = 200]. City 3 gets 40% of City 1, 20% of City 2, and
nobody from City 3 [= 40 + 40 + 0 = 80].35 35 Note that this is the exact same thing that the

matrix-vector product is computing for us, but
thinking about the physical meaning can help
if, for example, we only need a single specific
value in the output vector as opposed to the
entire vector (aka two problems down).

z Problem: Considering the same matrix A as above, do people stay within the 3

cities?

Answer: No.

Quick Solution: Appealing to the definition and checking the column sums,
people are disappearing from City 1 so people are not staying in the system.

Long Solution: Phrased another way, this question is asking if people are
conserved within the system. In this case, we can appeal to the definition and check
the sum of the columns; recall that the values in a specific column i represent the
movement of people from City i to all cities in the system. If these proportions do
not sum to 1 for any i, then we conclude that City i is generating or hemorrhaging
people (and these people are not merely coming from or going to other cities in
the system, since they are newly introduced to the system as a whole).36 Here, the 36 For the mathematically inclined, if ∃j ∈

{1, . . . , n} where
(
∑n

i=1 aij
)
6= 1, the quantity is

not conserved in the system.
column sums are as follows: c1 : 0.9, c2 : 1, c3 : 1. We notice that c1 6= 1 so people
do not stay within these 3 cities.

z Problem: Given A (representing the transfer of water between buckets) and ~x[n]
below representing the gallons in each bucket at t = n, how much water is in
bucket c at t = n + 1?

A =


0.1 0.1 0.4 0.5
0.6 0.15 0 0.2
0.3 0.5 0.3 0.2
0 0.25 0.3 0.1

 ~x[n] =


3
4
19
1


Answer: 8.8 gallons
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Quick Solution: Option 1: Compute A~x[n] = ~x[n + 1] =


8.8
2.6
8.8
6.8

 and select the

amount in bucket c: 8.8 gallons. Option 2: See the long solution!

Long Solution: Note that we only care about the movement of water from all
buckets into bucket 3. We could compute the entire matrix-vector product at
once (as in the quick solution and cherry-pick the value we want from the
output vector (your computer will make quick work of this computation). But for
intuition’s sake (and for exams!) we ought to work smart, not hard. Following the
suggestion in the margin from 2 problems above, we can work only with the values
we care about, found in row 3. Simply compute 3 · 0.3 + 4 · 0.5 + 19 · 0.3 + 1 · 0.2 =

0.9 + 2 + 5.7 + 0.2 = 8.8 gallons.

z Problem: Given the following State Transition Diagram representing search engine
traffic by people on the Internet, and corresponding state vector ~x[t], write the
State Transition Matrix.

Google

Yahoo

Bing1/2

1/6

1/3

0

2/3

1/3

1/2

1/2

0

~x[t] =

xgoogle[t]
xyahoo[t]
xbing[t]



Answer:

 1
2 0 1

2
1
6

2
3

1
2

1
3

1
3 0


Quick Solution: Following the pattern in eq. (12), we know there are 3 nodes
(ordering given by ~x, so we form an empty 3× 3 matrix. Then, systematically label
each position with the corresponding value in the diagram.

Long Solution: There’s not much to add to the quick solution, but here’s the
explicit matrix labeled for this problem:Pg→g Py→g Pb→g

Pg→y Py→y Pb→y

Pg→b Py→b Pb→b


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z Problem: Is the internet traffic system described by the diagram above conserva-
tive, meaning no people enter or leave the system?

Answer: Yes.

Quick Solution: We apply the definition and check the sum of proportions in
each column, as noted at in the relevant information section.37 Since the 37 See also 3 problems above for a more

detailed solution to an almost identical
problem.

column sums are all ones, the system is conservative.

z Problem: If the sum of the values in a column for an arbitrary state transition
matrix is greater than 1, what does this imply about the corresponding node and
system?

Answer: Matter is entering the system through that node over time, the system
may or may not be conservative; depends on the other nodes’ behaviors.

Quick Solution: We appeal to the definition as presented earlier, and the answer
follows directly.

Long Solution: By definition, we note that a column sum of exactly 1 implies
conservation of matter in the system; nothing is entering or leaving the system
through that node. This is a nuance to treat carefully; a column sum of 1 does not
mean the amount of matter at that node stays constant over time. In fact, this will
generally not be the case. It only means that the system is not gaining matter over
time through that node.

Information about the column sum of one node also tells us nothing about
other nodes. The system may be conservative, if all other nodes also have column
sums of exactly 1. If some columns have sums over 1 and others have sums less
than one, who can say what’s happening? A look at the specific matrix will be
required to dig deeper and make any conclusions.

In this case, a singular column sum greater than 1 indicates that the net
contribution of that node with regards to the system is to add matter over time.

z Problem: Find the inverse of A below.

A =

 1 0 2
−1 1 −1
0 −1 0



Answer: A−1 =

−1 −2 −2
0 0 −1
1 1 1


Quick Solution: We first form the augmented matrix as described in eq. (14) and
when we reduce to eq. (15), we arrive at A−1 as above.

Long Solution: We show the steps here as a complete example of the process of
finding an inverse:38 38 However long these take you by hand, take

some small comfort in knowing they take me
longer to put in LATEX :-)
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 1 0 2 1 0 0
−1 1 −1 0 1 0
0 −1 0 0 0 1


R2 + R1 → R2 =⇒

1 0 2 1 0 0
0 1 1 1 1 0
0 −1 0 0 0 1


R3 + R2 → R3 =⇒

1 0 2 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1


−R3+R2→R2
−2R3+R1→R1

=⇒

1 0 0 −1 −2 −2
0 1 0 0 0 −1
0 0 1 1 1 1


z Problem: Find the inverse of A below. Hint: Reuse some work from above! 1 0 2

−1 1 −1
0 −1 −1


Answer: No inverse exists.

Quick Solution: We follow the steps in the previous problem, but we arrive at a
row of zeros after the step where we add R2 to R3! So the inverse does not exist,
since we can’t get the identity matrix on the left side.

z Problem: Suppose A = B
4×2
× C

2×4
. Does A−1 exist?

Answer: No.

Quick Solution: We note that based on the dimensions of C, it must have
more columns than rows, and so its columns cannot all be linearly independent
=⇒ C is not invertible =⇒ C~x =~0 must have a solution ~x that is not trivial. By
associativity of matrix multiplication,39 for this same nontrivial ~x, B(C~x) =~0 = 39 See course notes if you need a refresher on

this property.(BC)~x =⇒ A~x =~0 and since ~x is nontrivial, A cannot be invertible.40

40 It was so hard not to mention the word
null-space, but this will be covered later.Long Solution: The quick solution is complete in its logic, but skips some

steps and justifications, which we elaborate on here.

Let’s consider why having more columns than rows implies linear dependence
of the columns.41 The length of a single column vector is given by the number 41 Get ready for some word-based intuition;

a more rigorous explanation of all this can
be found in the notes, which I recommend
reading if this explanation starts to feel
unintuitive at any point.

of rows in the matrix (call this r). If we start off with a single column vector of
some length, it is a one-dimensional object, describing a 1D line in r-dimensional
space. If we try to make the column vectors all linearly independent, then every
time we add another column vector, it must be in a different "direction" than all
the previous ones. For the second column vector we add, we have r− 1 choices
for this direction. For the third, we only have r− 2, and so on. At some point, we
will run out of unique directions to "unlock" with each new vector; the most we
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can unlock is r directions representing r dimensions, but once those are used up,
we’re done!

The takeaway is this; if we have more columns c than rows r, then the first r
columns can be linearly independent, but the remaining c− r of those necessarily
can be created as a linear combination of the r vectors we already have. Why?
Because the first r vectors unlocked all of the r-dimensional space the vectors live
in. There are no new directions left! By eq. (9) and definition 2 right below it, the
full set of c vectors are linearly dependent.

The step where we connected linear dependence of columns to a non-invertible
matrix follows directly from the end of the relevant information section.
The next step uses the 3rd definition of linearity following eq. (9). In the final
step, we conclude that nontrivial ~x implies a noninvertible A. This follows from
the matrix-vector column-based interpretation in eq. (8), because an invertible A
requires that when A~x = 0, ~x = 0).

z Problem: Given some A as the state transition matrix for some system, given ~x[n]
at t = n, can we always find ~x[n + 1] at t = n + 1? How?

Answer: Yes. A~x[n] = ~x[n + 1]

Quick Solution: We can always "progress forward" in time given a system’s
state and corresponding transition matrix. We simply apply the transformation to
the desired state to get the transformed state.

z Problem: Similarly given A for some system and ~x[n] at t = n, can we always find
~x[n− 1] at t = n− 1? How?

Answer: Not always. Only if A−1 exists, then A−1~x[n] = ~x[n− 1]

Quick Solution: We cannot always "track backwards" in time given a system’s
state and corresponding transition matrix. This is related to the idea of unique
input→ output mappings. If these mappings are unique, then the inverse exists,
and we can progress backward. But if not, we cannot go backward since there will
be multiple inputs that could have led to an observed output.42 42 See fig. 5 and the corresponding part in the

relevant information section if you’d like
a refresher on this notion of uniqueness.

z Problem: Suppose we’re given state transition matrix A; given ~x[n], can we find
~x[n− 1]? [

1 0.5
0 0

]
Answer: No.

Quick Solution: This problem reduces to finding out if A is invertible. There’s
a row of zeros, so it isn’t, and so we cannot apply the inverse to go back a
timestep from the current state. Also note that the columns are linearly dependent
(c1 = 2c2), so the matrix cannot be invertible.43 43 There are many ways to arrive at the same

result, given the connection between concepts
like linear dependence, matrix invertibility,
matrix columns, and more. Choose whichever
approach you prefer!
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z Problem: Given a diagonal matrix A where all entries on the diagonal are nonzero
but all other entries are zero, is A−1 also diagonal?

Answer: Yes.

Quick Solution: We know the diagonal matrix looks like the left part, and we
augment it with In to prepare to take the inverse:

a11 0 . . . 0 1 0 . . . 0

0 a22
... 0 1 . . . 0

...
. . .

...
...

...
. . . 0

0 . . . . . . ann 0 0 . . . 1


Reducing the left to an identity matrix isn’t hard; we just divide each row i by the
value of aii! In doing so, the identity matrix entries also become scaled to 1

aii
, but

no new non-diagonal entries are introduced. So the inverse is also diagonal.

z Problem: Given AN = 0 (the zero matrix), is A invertible?

Answer: No.

Quick Solution: Proceed with Proof By Contradiction:44 We assume A−1 exists. 44 See course notes, this is a common proof
technique!Then AN−1 = A−1AN = A−10 = 0. Using inductive reasoning, A = 0. We

now contradict the assumption that A is invertible (0 is not invertible). So our
assumption is wrong, A is not invertible.

Long Solution: We approach this question by considering what it would
mean for A−1 to exist. If it existed, then we could multiply the left side of both
expressions45 by A−1, yielding AN−1 = A−1AN = A−10 = 0. We’ve shown that 45 Matrix multiplication isn’t commutative,

so we indeed need to multiply both sides by
the same matrix on the same side of the existing
expression.

if AN = 0, the next lower power AN−1 is also 0.

But there’s no limit to how many times we can repeat the same statement,
such that AN−2 = 0, AN−3 = 0, all the way down to A1 = 0. The zero matrix
isn’t invertible, so we must have made a mistake in our logic somewhere. If our
assumption that A−1 existed was correct, then since we were justified in every
other step, we could not have reached this logical error. Therefore, it must not be
possible for A−1 to exist.



Practice Set 3: Vector Spaces

Relevant Equations/Information
This section corresponds to notes that are
particularly heavy on definitions. So, this
section may make little sense without having
read the course notes (or watched lecture) first,
unless your background in linear algebra is
significant already. Here it is meant primarily
to help refer to major concepts in Problem
explanations.

Vector Space: The notion of a vector space V is likely more abstract to you than

earlier linear algebra concepts in this course. It is defined as a set of vectors along

with the vector addition and scalar multiplication operators.46 This entire set must

46 These operators need not even be the
addition and multiplication you’re used to;
we can literally redefine them entirely and
still satisfy the vector space properties. If this
confuses you, don’t worry. It’s not a point of
emphasis in this class.

satisfy 10 key properties as listed below.

1. Associativity of Vector Addition

2. Commutativity of Vector Addition

3. Additive Identity

4. Additive Inverse

5. Closure under Vector Addition

6. Associativity of Scalar Multiplication

7. Multiplicative Identity

8. Distributivity in Vector Addition

9. Distributivity in Scalar Addition

10. Closure under Scalar Multiplication

A couple of important examples of vector spaces you’ve already seen include

RN , the vector space containing all n-dimensional vectors, and the set of all matrices

A of a given size n×m. Understanding the first of these examples is most critical for

this class.

Basis: Given a vector space V and a set of vectors S, the vectors in S constitute a

basis for V if:

1. they are all linearly independent.

2. their span is V.

This essentially means that a basis of V consists of the most condensed set of

vectors possible that still span V. It is a minimal set of spanning vectors. Consider what

happens if we take a set of vectors known to be a basis, and add another vector to

it. Does it remain a basis? It doesn’t, because it is no longer a minimal set. We can

remove the vector we just added and still have a linearly independent spanning set.
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Similarly, suppose we have a linearly dependent spanning set of vectors; linear

dependence implies redundancy, so once we strip out all the redundancy, the resulting

set will still span the vector space but now will form a basis. Note that the vectors in

the basis itself can vary; for example, considering the example of R2, there are an

infinite number of pairs of vectors that form a basis. Consider
([

1
0
]
,
[

0
1
])

(standard

basis),
([

4
3
]
,
[

0
1
])

,
([ 5
−2
]
,
[

1
4

])
, etc. To generalize, for RN , any N (and only N) linearly

independent vectors form a basis!

Dimension: The dimension of V is the number of vectors in its basis, which is

always the same regardless of our choice for the specific basis vectors.

Subspace: A subspace U of V is a subset of the vectors in V that satisfy the

following:

1. Contains~0.

2. Closed under vector addition.

3. Closed under scalar multiplication.

Intuitively, a subspace is a closed subset of all the vectors in V. Any linear

combination of vectors in the subspace must also lie in that subspace. A couple other

definitions related to subspaces (very analogous to how they’re defined for vector

spaces):

1. Basis for a Subspace: set of linearly independent vectors that span the subspace

(minimal set of subspace-spanning vectors)

2. Subspace Dimension: number of vectors in subspace-basis.

Column Space and Row Space: The column space of a matrix A
m×n

is the span of

the n columns in A, and is also sometimes referred to as the range of A. Similarly,

the row space is the span of the n rows. Thinking about A as a linear transformation

from RN → RM, the column space is effectively the set of all outputs that this matrix

can transform input vectors to. Note that in the general case, input vectors and

output vectors can be different lengths; the column space describes all possible output

vectors ~b
m×1

. It can be shown that range(A) forms a subspace of RM.47 47 Note that range(A) is not necessarily RM.
This is explained in following definitions.

Rank: The rank of A is defined as the dimension of the column space of A (aka

dim(range(A)) ≡ dim(col(A))).48 This is at most m, but certainly can be less, since 48 It’s all too easy to confuse an actual space
consisting of vectors, like a matrix range
describing the output (column) space, with the
dimension of that space, which is just a single
scalar number. Keep them straight!

an arbitrary A
m×n

is not guaranteed to have columns whose span is all of RM. Consider

the simple counterexample of the zero matrix 0
m×n

, which maps all n-dimensional

input vectors to the m-dimensional all-zero vector.
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In general, using the column-wise representation of matrix-vector multiplication

as in eq. (8), we can show that rank(A) is the number of linearly independent

columns in A. This is at most min(n, m). Why is this the case? Well, any output

vector can be represented as a linear combination of the columns of A. But some

of these columns might themselves be linear combinations of other columns, which

means we can replace any redundant column with a weighted sum of the other

columns. By removing all redundancies, we find that a matrix with k(≤ min(n, m))

linearly independent column vectors can "unlock" exactly k dimensions in the output.

From these results, we find that rank(A) also equals the number of pivots in the

RREF of A. Since each pivot must belong to a row and a column, the number of pivots

in A
m×n

is limited by the smaller dimension. For a tall matrix (m > n), the columns

are the limiting dimension; for a wide matrix (n > m), the rows are.

Null-Space: The null-space of a matrix A
m×n

is defined as the set of all ~x for which

A~x =~0; that is, the set of all inputs that get mapped to~0 (the zero output vector) by

A. dim(null(A)) can be interpreted as the number of input directions for which the

output is "compressed" down to zero.

Suppose you have a matrix and want to find out what dim(null(A)) is. It’s

equal to the number of free variables present in the RREF of A.

Procedure to Compute a Null-Space for a Given Matrix: Computing the null-

space of A requires us to solve A~x =~0. The procedure is as follows:

1. Put A in RREF. Initialize the set S = {~0}.
2. Check each column for leading entries and find the number of free (F) and basic

(B) variables.

3. if F = 0, stop and skip to the last step.

4. if F 6= 0, repeat the following for each free variable:

(a) Set that free variable to 1, and all others to zero.

(b) Solve A~x under these conditions; add the solution vector to S.

5. Conclude that null(A) = span(S).

To practice applying the steps, let’s do an example to find null(A):

A =

1 2 3 1

3 1 2 3

 RREF
=⇒

1 0 1
5 1

0 1 7
5 0


There are 2 free variables (x3 and x4), and 2 basic variables (x1 and x2). The



38

solutions are parameterized by the equations:{
x1 + 1

5 x3 + x4 = 0

x2 +
7
5 x3 = 0

We set x3 = 1, x4 = 0. Solving A~x, we find ~x1 =
[
− 1

5 − 7
5 1 0

]>
. Repeat with

x3 = 0, x4 = 1; ~x2 =
[
−1 0 0 1

]>
. Therefore:

null(A) = span




− 1

5

− 7
5

1

0

 ,


−1

0

0

1




Rank-Nullity Theorem: How is the number of free variables related to the total

number of columns in a matrix? Well, each column of a matrix either contributes

a "new direction" to the output or it is redundant with other columns and their

already-discovered directions. In other words, each of n columns adds a dimension

to range(A) or to null(A). Therefore, the following holds:

dim(range(A)) + dim(null(A)) = n (16)

Problems

z Problem: Is it true or false that the vectors in S below span R2?

S =

{[
−3
1

]
,

[
−1
0

]
,

[
5
2

]}
Answer: True

Quick Solution: We can form a plot as in fig. 6 and visually confirm that these
vectors can indeed reach any point in R2. Also note that there are at least 2 unique
directions represented by these vectors; we can conclude without much work that
in this simple example, the given vectors span R2.

x

y

~v1

~v2

~v3

Figure 6: It is clear from the diagram that the
given vectors span all of R2.

Long Solution: We appeal to the definition; can a linear combination of these
vectors be used to create any vector~b in R2?49

49 Note that because there are 3 vectors that
each have only 2 elements, they must be
linearly dependent. This isn’t a concern for
span, but it’s useful to get into the habit of
noting these things for concepts like bases,
subspaces, null-spaces, and more.

We could use an intuitive or visual approach, as in the quick solution, but
this approach will quickly fall apart for larger dimensions. It’s not so easy to
plot a set of 4D vectors to confirm that they span R4! Let’s take a more rigorous
approach (or rather, 2 of them):

1. Eliminate Redundancy + Gaussian Elimination: In this approach, we first
remove a redundant vector from the given set. Noticing

[
5
2
]
= 2

[ −3
1

]
− 11

[ −1
0

]
,
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we eliminate the 3rd vector, leaving only the first two. Then, we have to
mathematically formulate in words the question at the start: can a linear
combination of these vectors create any arbitrary

[ b1
b2

]
? Using eq. (8), we must

check if:

α1
[ −3

1

]
+ α2

[ −1
0

]
=
[ b1

b2

]
has a unique solution in terms of b1 and b2. We use Gaussian Elimination on
the augmented matrix below: [

−3 −1 b1

1 0 b2

]
Solving, we find that α1 = b2, α2 = −b1− 3b2. That is, there is a unique solution,
so given any point in R2, we can scale the given vectors to reach that point.
That is, we span R2.

2. We can also manually determine if the standard unit vectors î =
[

1
0
]

and
ĵ =

[
0
1
]

are in the span of the given vectors. If they are, then we can definitely
create any other point in R2 using the standard unit vectors, so we will span
R2.

So we check:

î = −
[ −1

0

]
3

ĵ =
[ −3

1

]
− 3
[ −1

0

]
3

Indeed, we span R2.

There are many other ways to determine if a a set of vectors spans a space as
well, and some approaches may be easier than other to apply in certain situations.

z Problem: Is it true or false that the vectors in S below form a basis for R3?

S =


1

2
3

 ,

 5
−2
1

 ,

−3
6
5




Answer: False

Quick Solution: We have 3 vectors in the candidate basis, but they are not
linearly independent, and therefore cannot form a basis for R3.

Long Solution: Recall that a basis is a minimal set of spanning vectors. As a sanity
check, we have exactly 3 vectors in a candidate basis for a 3-dimensional space, so
we satisfy the criteria for being minimal. Now we need to check if all the vectors
are linearly independent; if they are, then they span R3, so combining minimality
with spanning, we can conclude that they form a basis.

At this point, we have many options to check linear independence of vectors;
visual inspection is difficult for anything larger than 2D, so we opt to use Gaussian
Elimination (forming an augmented matrix with each vector as a column and
setting the solution vector to zero). Then, we solve! 50 Once we put the matrix in 50 If this approach doesn’t make sense, revisit

eq. (9)! We’re essentially trying to show that
the only solution to A~x = ~0 is the trivial
solution, or that the null-space is trivial.
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RREF form, we can determine rank(A). Note that the rank gives the number of
linearly independent columns; if the rank isn’t 3, we can’t have a basis!1 5 −3 0

2 −2 6 0
3 1 5 0


R2−2R1→R2
R3−3R1→R3

=⇒

1 5 −3 0
0 −12 12 0
0 −14 14 0


7
6 R2−R3→R3 =⇒

1 5 −3 0
0 −12 12 0
0 0 0 0


At this point, there are many ways to arrive at the same conclusion, and many

ways to phrase it. We have a free variable (~c3), so the vectors are linearly dependent.
~c3 is a linear combination of ~c1, ~c2, so our rank is only 2 (again, vectors are linearly
dependent). null(A) (we just solved for the null-space by setting A~x = ~0) is
nontrivial.

The conclusion is, the vectors are not linearly independent so the vectors cannot
form a basis for R3.

z Problem: The vectors ~v1, . . . , ~v5 below are known to span R3 (feel free to confirm).
Of the options listed, which set of vectors is a basis for R3?

~v1 =

1
2
2

 ~v2 =

2
5
4

 ~v3 =

1
3
2

 ~v4 =

2
7
4

 ~v5 =

1
1
0


∗ S1 = {~v1, ~v2, ~v3, ~v4, ~v5}

∗ S2 = {~v1, ~v3, ~v5}

∗ S3 = {~v1, ~v2, ~v4}

∗ S4 = {~v1, ~v3, ~v4, ~v5}

Answer: S2

Quick Solution: Immediately eliminate S1 and S4; by definition, a basis must
have exactly as many vectors as the dimension of the vector space of interest
(here, dim(R3)=3). With the remaining two sets, we can go through the exact
same process as in the previous problem, performing Gaussian Elimination on the
augmented matrix to find the set with linearly independent vectors. Doing so, we
can find that the vectors in S3 are linearly dependent, so only S2 can be a basis.

z Problem: Suppose ~v1 and ~v2 are two vectors in set W. If it is known that ~v1 + ~v2

is not in W, is W a subspace for any vector space?

Answer: No
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Quick Solution: Note the properties of a subspace (especially relevant here is
closure under vector addition), and recall that a subspace is a closed subset of a
vector space; if the sum ~v1 + ~v2 is not in W, W is not closed by definition.

z Problem: Performing Gaussian Elimination on A below yields A′. Find a basis
for col(A).

A =

[
1 −2 4 3
−1 2 1 2

]

A′ =

[
1 −2 0 −1
0 0 1 1

]

Answer:

{[
1
−1

]
,

[
4
1

]}
Quick Solution: We notice that ~c1 and ~c3 correspond to basic variables, whereas
~c2 and ~c4 do not contain leading ones in RREF form, so they correspond to free
variables. Stated another way, ~c2 and ~c4 are linear combinations of ~c1 and ~c3. We
can then take ~c1 and ~c3 from A and arrive at a basis for col(A).

Long Solution: The tedious work has been done already in performing Gaussian
Elimination; the task left is to interpret the results. Using the columns of A′, we
can quickly see which variables are basic, and the columns from A′ corresponding
to these basic variables allow us to form a basis for col(A). 51 Here, we can see 51 Note that col(A) ≡ col(A′); that is, Gaus-

sian elimination preserves the column space.that ~c2 is a multiple of ~c1, and ~c4 is a linear combination of ~c1 and ~c3. That is, ~c1

and ~c3 form a basis for the column space. We now go back to A and select those
columns and arrive at the answer as

{[ 1
−1
]
,
[

4
1

]}
.52 52 Note that

{[
1
0

]
,
[

0
1

]}
, the columns from A′,

also form a basis for col(A). In the original
question, this combination just wasn’t one
of the choices presented. It serves as a good
reminder that bases aren’t unique!

z Problem: Is it true or false for an m × n matrix A with pivots in every row,
col(A)=RM?

Answer: True

Quick Solution: A pivot (leading entry) in a column means that column cor-
responds to a basic variable. If there are leading entries in all m rows, then the
m columns containing those leading entries are all linearly independent.53 The 53 Note that this also implies there are at least

as many total columns as rows to hold these
leading entries; n > m.

rank of a matrix is the number of linearly independent columns it has; here, this
is m. The rank of a matrix also gives dim(col(A)). From here, we conclude that
col(A)=RM.

When m < n, the pivot in each of the m rows occupies a spot in one of the
n columns, so the same result holds. Note that some of the n columns must be
linearly dependent; they cannot each contain a pivot, because that would imply
that there are at least as many rows as columns to hold the pivots (there can’t be,
since m < n).

z Problem: If we have A
m×n

, what are the maximum values of dim(null(A)) and

dim(col(A))?
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Answer: dim(null(A))︸ ︷︷ ︸
max

= n, and dim(col(A))︸ ︷︷ ︸
max

= min(m, n)

Quick Solution: For dim(null(A))︸ ︷︷ ︸
max

, consider the case of 0
m×n

. For dim(col(A))︸ ︷︷ ︸
max

,

see the Rank part of the relevant information section for an explanation.

Long Solution: For the maximum dim(null(A)), consider 0
m×n

. Absolutely

every input is mapped to 0 at the output, so the null-space, by definition, is the
entire input space! dim(null(A)) is the number of input directions for which the
output is zero; here, it’s all of them (= n, since there are n columns). Another
way to see this result is by invoking the Rank-Nullity Theorem, eq. (16). The zero
matrix has rank 0, because it has no linearly independent columns. This implies
that the dim(null( 0

m×n
)) = n.

As for the maximum dim(col(A)), we can think about the number of pivots
in the RREF of A, as outlined in the Rank section. Alternatively, consider that any
output can be represented as a linear combination of the linearly independent
columns of A, which is a most n. What if m > n? Do the additional rows
"unlock" more output dimensions? Sadly not; in this case of a "tall" matrix,
performing Gaussian Elimination will reveal that many equations (rows) are
linearly dependent with other equations, so we encounter the same issue.54 54 Notice the symmetry; thinking about a

matrix in terms of its columns is not inher-
ently different than thinking in terms of
rows. This is one reason why dim(col(A)) =
dim(row(A)) for any matrix A.z Problem: Given A below, find dim(col(A)).

A =


1 2 0 3
−1 2 0 1
1 −2 0 −1
3 5 0 8


Answer: 2

Quick Solution: We perform Gaussian Elimination to find the number of linearly
independent columns, and arrive at 2. Or we notice that ~c3 is~0 and adds nothing
to our span, and ~c4 = ~c2 + ~c1, so ~c4 is redundant. Therefore, we have 2 linearly
independent vectors, so rank(A) ≡ dim(col(A)) = 2.

Long Solution: Let’s go through and perform Gaussian Elimination for the
practice: 

1 2 0 3
−1 2 0 1
1 −2 0 −1
3 5 0 8


R1+R2→R2
R3−R1→R3
R4−R1→R4

=⇒


1 2 0 3
0 4 0 4
0 −4 0 −4
0 −1 0 −1


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R3+R2→R3
R4+

1
4 R1→R4

=⇒


1 2 0 3
0 4 0 4
0 0 0 0
0 0 0 0


From here, dim(col(A)) = 2.

z Problem: Is it true or false that a square matrix A
n×n

is invertible if and only if

rank(A)= n?

Answer: True

Long Solution: In many ways, this is a question about definitions. If rank(A)=

n, then all n columns are linearly independent. A matrix is only invertible if
dim(col(A))= n. Why? Because then, the output of the matrix has dimension
n, and the input has dimension n by definition. We do not lose any dimensions
going from the input to the output, so the matrix has a trivial null-space. Each
input → output mapping is unique, so given an output, we can apply A−1 and
find the corresponding input.

Another way to think about the concepts is to note that each linearly inde-
pendent column will contain a leading entry in the RREF form of the matrix.
Therefore, when we concatenate the identity matrix to A and reduce (go from
eq. (14) to eq. (15)), we are certain we will actually reach identity on the left side
(and therefore have the inverse on the right).

z Problem: Is it true or false that for a square matrix A, rank(A) = rank(A2)?

Answer: False

Quick Solution: We’ve seen this topic before; consider Nilpotent Matrices. There
is no guarantee that applying a linear transformation twice preserves output vector
directions (dimensions) in the same way as applying it once. It is also easy to
generate examples to show this, such as A =

[
0 1
0 0
]
.55 55 It is worth noting that if A is full rank

(invertible), then A2 is invertible, and is also
therefore full rank. In this case, rank(A) =
rank(A2). But the converse does not hold; for
some noninvertible matrices, such as

[ 1 2 3
2 4 6
3 6 9

]
,

rank(A) = rank(A2) = rank(A3)... so be
careful!

https://en.wikipedia.org/wiki/Nilpotent_matrix


Practice Set 4A: Page Rank, Eigenval-
ues and Eigenvectors

It is worth noting that this section is quite long
because of the sheer number of various useful
concepts involved. The goal is to take the most
important information from the corresponding
notes and present as self-sufficient a version as
possible.

Relevant Equations/Information

Page Rank + Stability: Suppose that we can model the internet as a state diagram

as in fig. 7, with each user belonging to a node (website) and having some chance

of moving to a different site, or staying on the same one.56 We start the system (or 56 This logic is identical to that of the water
pumps in previous notes; see fig. 3 and fig. 4

and possibly also the associated portion in
relevant information for a refresher.

initialize it) with state of ~x[0] (a list of proportions). Over time, the proportions might

"settle down" such that from one timestep to the next, we see little change, depending

on the system behavior.

google.com bing.com

0.5

0.8
0.20.5

Figure 7: An absurdly simple Page Rank

diagram with just 2 websites.

P =

[
0.5 0.8

0.5 0.2

]

We may even reach an equilibrium state or steady state, denoted ~x∗ and defined

as a state for which applying the state transition matrix P does not change the state

vector. Succinctly:

~x∗ = P~x∗ (17)

What’s the point of finding ~x∗? Well, the hope is that this vector gives information

about the steady-state popularities of the websites (which can be used in generating

advertisements, usage statistics, and more).

Let’s consider the 2-node system in fig. 7. The associated state transition matrix

(treating Google as node 1 and Bing as node 2) is P =
[

0.5 0.8
0.5 0.2

]
. Suppose we have

1000 people, and they each are equally likely to visit Google or Bing when they first

go online. Our initial state is then ~x[0] =
[

500
500
]
. What happens after 1 timestep? Well,

50% of people on Google will move to Bing and the other half remain, so Bing gains

250 from Google. Similarly, 20% of Bing will move to Google and 80% remain, so

Google gains 400 from Bing. Overall, Google gets 150 from Bing, so ~x[1] =
[

650
350
]
.

From this, it seems like Google is more popular; but remember, this is only after

one timestep! Things can change. Does our calculation of ~x[1] match the result of

applying the matrix directly? We check:

~x[1] = P~x[0] =

0.5 0.8

0.5 0.2

500

500

 3
=

650

350

 0 2 4 6

400

500

600

Timestep

People

Google Bing

Figure 8: Distribution of people in each search

engine over timesteps, corresponding to

simple example in fig. 7.
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Applying P gave the same result as our word-based calculation, as expected!

Now, let’s see what happens if we repeat this process many times; the results are

plotted in fig. 8. Notice they seem to be approaching some values. But how can we

rigorously show what they’re approaching, and what are these values?

Eigenvalue/Eigenvector: What is an eigenvector? It represents a sort of stability

point: vectors aligned with an eigenvector will not change direction under a linear

transformation A. They will simply be scaled by some factor. The eigenvalue de-

scribes this stretching or compressing factor for vectors aligned with an eigenvector.57 57 Note that eigenvectors are a property of the
matrix itself and do not depend on the specific
vector being transformed.Because these two terms are so commonly used in conjunction, we often refer to an

eigenvalue/eigenvector pair. We represent these ideas with the following definition:

~x is an eigenvector of A with associated eigenvalue λ if:

A~x = λ~x (18)

The concept is best illustrated with some diagrams. Suppose we have A =[
0.9 1
0.7 1.2

]
. This matrix has an eigenvector/eigenvalue pair (~v1, λ1) =

([
1
1

]
, 1.9

)
. This

means any vector that’s a multiple of the eigenvector, when it’s transformed by A,

will become a scaled version of itself. Let’s take ~x =
[

2
2
]
. Does eq. (18) hold (does

A~x = 1.9~x)? Indeed it does! We can verify this computationally as
[

0.9 1
0.7 1.2

][
2
2
] 3
=[

3.8
3.8
]
, and illustrate it in fig. 9. Note that scaling a given eigenvector for an eigenvalue

will still produce a valid eigenvector, since the vector’s direction will not be changed.
x

y

~x

~x′

~v1, λ = 1.9

Figure 9: ~x is transformed into a λ1~x = ~x′ by

A since it’s aligned with ~v1 of A.

A =

[
0.9 1

0.7 1.2

]
Now let’s go back to the original example. Suppose we’re already many

timesteps into the dynamics of the system, and we have ~s and ~s′ (see in fig. 10)

before and after one more timestep, in which the transformation P from above is

applied. ~v is a relevant eigenvector with λ = 1. Note how~s and ~s′ are related; they’re

the same! What does this mean for the Page Rank example? Well, if the state vector

ever becomes ~x[i] =

 8
13 · 1000
5

13 · 1000

 ≈
615.4

384.6

, then those proportions will not change;

they are aligned with the eigenvector ~v1 which scales input vectors by exactly 1. We

see this steady-state pattern in fig. 8!

For the same P, when the initial state ~x[0] is transformed, it becomes ~x[1]. Note

that ~x[0] is not aligned with the eigenvector, so it doesn’t just get scaled; its direction

changes.

x

y

~x[0]

~x[1]~s =~s′

~v1, λ = 1

Figure 10: Notice how ~x[0] changes into ~x[1],

but~s and~s′ are the same, both aligned with

~v1. Everything except ~v1 is scaled down by

a factor of 100 for visualizing purposes. But

remember, the direction is what matters.

Determinant: The determinant is a quantity we can define for any square matrix.
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For a 2× 2 matrix, the formula is:

det

a b

c d

 = ad− bc (19)

We can calculate determinants for higher dimension matrices as well, as de-

scribed here. There is a nice geometrical intuition for the determinant; for a 2× 2

matrix, if we treat each column vector of a square matrix as one leg of a parallelogram,

the determinant gives the area of of the parallelogram. We take the same A =
[ 0.9 1

0.7 1.2

]
to illustrate in fig. 11. According to eq. (19), the determinant is 0.9 · 1.2− 0.7 · 1 = 0.38.

If we calculate the area of the parallelogram defined by the two column vectors,

we also get 0.38! For a 3× 3 matrix, the shape is a parallelipiped, and we form

hyper-volumes in higher dimensions.

x

y

1.9

1.90.9

1.2

0.6

0.7
0.315

0.315

0.7

0.6

~c1

~c2

Figure 11: Plot of the columns of A from

earlier. det(A) = 0.38, which is the same as

the area of the labeled parallelogram. This

area can be found by forming the square

from (0, 0) to (1.9, 1.9) and subtracting out

the areas of various triangles/rectangles

(the boxed values), as shown. 1.92 = 3.61.

3.61− 2(0.7)− 2(0.6)− 2(0.315) 3
= 0.38.

A =

[
0.9 1

0.7 1.2

]

On the other hand, in fig. 12, we notice what happens if the column vectors

are linearly dependent, as for B =
[

0.4 0.9
0.8 1.8

]
; they will lie on top of each other, so the

area enclosed will be zero! Similarly in 3D, if any column vectors are multiples of

each other, we "squash" a volume into a plane or a line. A useful general result to

remember is that the determinant of any square matrix is zero if the columns are linearly

dependent.

x

y

~c2

~c1

Figure 12: Plot of the linearly dependent

columns of B. det(B)= 0, since the columns

are overlapping (aligned) and the area be-

tween them is zero.

B =

[
0.4 0.9

0.8 1.8

]

Computing Eigenvalues and Eigenvectors: One major question remains from

earlier; given a matrix, how do we find the (~v, λ) pairs? How many are there? What

does it mean if two vectors have the same eigenvalue, or if there are two of the same

vector? Let’s apply our newfound knowledge about determinants!

We can put eq. (18) in the following form:

(A− λIn)~x =~0 (20)

Solving this equation for nonzero (nontrivial) solutions ~x will yield our eigenvectors!

There’s only 1 parameter here that can vary in this equation: λ. Note that A and In

are fixed. The form of the above equation makes this clear, but we are forming a new

matrix A′ = (A− λIn). Note the generalized form of A′:

a11 − λ a12 . . . a1n

a21 a22 − λ . . .
...

...
...

. . .
...

an1 . . . . . . ann − λ


(21)

We want to find values of λ that cause the determinant of A′ to become zero (linear

https://en.wikipedia.org/wiki/Determinant
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dependence of the columns creates a nontrivial null-space for A′). The determinant

of A′ (in the case of a 2 × 2) is given by eq. (22) below, and solving this quadratic

equation, we can find the λ values. This part on the left is called the characteristic

polynomial.

λ2 − (a + d)λ + (ad− bc) = 0 (22)

Then, for each λi we find, we revisit eq. (20) and solve for the corresponding ~xi. See

the first two problems and explanations for a simple example.

If a matrix has repeated eigenvalues, they may (or may not) have distinct

eigenvectors. If the eigenvectors are distinct, they form an eigenspace. The term may

seem daunting, but it’s exactly like the concept of span; the eigenspace is a subspace,

the span of all eigenvectors for that eigenvalue (note that this includes~0). Any input

vectors that lie in this space (for 2 distinct eigenvectors, a plane) will be scaled by the

shared eigenvalue under a linear transformation. Complex eigenvalues can exist as

well; they are much harder to visually understand, but mathematically, we find them

using the exact same process as before.

Computing and Interpreting the Steady State: We introduced steady-states and

stability conceptually earlier, but now we are equipped to show how to find a steady-

state ~x∗. At this point, we have a definition for ~x∗ given in eq. (17). Let’s pattern

match to eq. (18); by definition, the steady-state eigenvalue is 1. Therefore, to solve

for the steady-state of a system represented by P, we solve eq. (20), substituting

λ = 1.58 58 Note that this amounts to solving for
the null-space of (P − In); see the previous
relevant information section for a
refresher on the process.

Predicting System Behavior for General Initial States: Given a system and an

initial state, can we predict how it’ll dynamically change over time? We saw in

the Page Rank example that we seem to approach a sort of steady-state after many

timesteps, but under what conditions does this happen?

Simpler Case, ~x[0] = α~v: Suppose our initial state is actually a perfect multiple

of an eigenvector of the system. Over time, upon repeated applications of A, we

accumulate factors of λ; ultimately, An~x = α (λn~x).59 Based on this pattern, we 59 Note how this is derived:

~x[0] = α ·~v
~x[1] = A~x[0] = αλ~v

~x[2] = A~x[1] = αλ2~v

~x[3] = A~x[2] = αλ3~v

...

notice the following behaviors based on the value of λ as n→ ∞:

• λ > 1: ~x[n]→ ∞ (exponential growth).

• λ = 1: ~x[n]→ k~v (steady-state).

• 0 < λ < 1: ~x[n]→~0 (exponential decay).
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• λ = 0: ~x[n] = 0~v =~0 (instantaneous disappearance).

• λ < 0: Take |λ| and refer to the appropriate case above. But recognize the sign

switches at each timestep.

General Case, ~x[0] = α1~v1 + α2~v2 + . . . + αn~vn. Recognize this form? It says that

the initial state is now not a scalar multiple of just one eigenvectors, it’s a linear

combination of all of them!60 But this case devolves into the previous one; we can 60 Note that this is still not fully general; we
assume here that all initial states are in the
span of the eigenvectors of A, which isn’t
guaranteed.

simply treat each element individually, apply the techniques from the Simpler Case,

and put them back together. The final form is as follows:

~x[n] = α1 (λ
n
1 ~v1) + α2 (λ

n
2 ~v2) + . . . + αn (λ

n
n~vn) (23)

Given a matrix A and some initial state ~x, how can we actually get to this equation

format? First, we solve for the (~vi, λi) pairs of A. Then, we use Gaussian elimination

to find the αi’s; Putting eq. (23) in matrix form yields:

~x[0] =


| | |

~v1 ~v2 · · · ~vn

| | |




α1

α2
...

αn


and we compute the inverse of the matrix of eigenvectors, arriving at:

α1

α2
...

αn

 =


| | |

~v1 ~v2 · · · ~vn

| | |


−1

~x[0] (24)

Now, let’s see how to interpret all this! Let’s assume that we drop any terms

corresponding to αi = 0 since those terms are, well, zero. Then, with what remains,

we can make some intuitive observations:

1. (diverge) Any |λi| > 1: ~x[n] → ∞. Even if other components in the linear

combination decay, the state itself "blows up" to ∞ as this component overshadows

all others.

2. (diverge) Any |λi| = −1: ~x[n]→ ? because that component oscillates forever.

3. (converge) All −1 < λi ≤ 1: ~x[n]→ ~x∗, steady-state! Each ith term either decays

to zero (|λi| ≤ 1) or stays the same (|λi| = 1), such that ~x∗ = ∑(i,λi=1) αi~vi. We

can normalize this steady-state if we want proportions (column values sum to 1)

rather than absolute numbers (such as ~x =
[

615.4
384.6

]
from the Page Rank example

before).
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Some Useful Information:

• If a matrix has n distinct real eigenvalues, their n associated eigenvectors are all

linearly independent. See course notes for a proof!
• An eigenspace for a given eigenvalue is the span of all eigenvectors, including~0,

and is also a subspace by definition.
• Say we calculate an eigenvector for an eigenvalue; we can pick any scalar multiple

of the result and this will still be an eigenvector, since scaling a vector does

not change its direction. This follows from the scalar multiplication property of

subspaces.
• A given eigenvector can only be associated with one eigenvalue, since a vector can

only be scaled by some single value upon being transformed by a matrix. But, an

eigenvalue can be associated with multiple eigenvectors, the span of which form

an eigenspace.
• If a matrix has some λ = 0, then for some ~x, A~x = λ~x =~0, so A has a nontrivial

null-space. Therefore, it is not invertible.
• If a matrix has some λ = 1, then any initial state that is aligned with the cor-

responding eigenvector is a steady-state. More generally, any initial state for

which λ = 1 comprises part of the linear combination potentially has a nonzero

steady-state, so long as all other |λi| < 1.
• The rotation matrix (that rotates any vector by θ degrees counterclockwise) is:

AR =

cos(θ) −sin(θ)

sin(θ) cos(θ)


For example, confirm that (AR,90◦)

[
1
0
]
=
[

0
1
]
.

Problems

z Problem: What are the eigenvalues of A?

A =

[
3 2
4 1

]
Answer: −1, 5

Quick Solution: The characteristic polynomial is (3− λ)(1− λ)− 8 = 0. Solving,
λ1 = −1, λ2 = 5.

Long Solution: As promised, this is the problem to showcase many of the ideas
mentioned in the relevant information section. To find the eigenvalues, we
need to find the values of λ1,2 that make eq. (18) hold. Rearranging, we arrive at
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eq. (20). What is this equation when it’s expanded?([
3 2
4 1

]
− λ

[
1 0
0 1

])
=

[
0
0

]
([

3− λ 2
4 1− λ

])
=

[
0
0

]

We need to set det

([
3− λ 2

4 1− λ

])
= 0 because by definition, the columns

will then be linearly dependent and we will have a nontrivial null-space, so we
can solve for actual nonzero vectors ~x that make the equation true. Noting eq. (19)
(or more directly, eq. (22)) we arrive at (3− λ)(1− λ)− 4 · 2 = 0. From here, we

find that λ2 − 4λ− 5 = 0, and λ1,2 =
4±
√

16−(4·−5)
2 = 2± 3 = −1 and 5.

z Problem: Extending the previous problem, given the same A, what are the
eigenvectors?

Answer:

(~v1, λ1) =

([
− 1

2
1

]
,−1

)
≡
([
−1
2

]
,−1

)

(~v2, λ2) =

([
1
1

]
, 5

)

Quick Solution: Using λ1 = −1 and λ2 = 5, we substitute each λi into eq. (20)
and solve the null-space of the resulting modified matrix. For a given eigenvalue,
the resulting null-space constitutes the corresponding eigenvector (or perhaps
eigenspace, though here it’s just 1 vector per eigenvalue). That’s how we arrive at
the answer above.

Long Solution: From before, we already have the eigenvalues: λ1 = −1, λ2 =

5. Now, we need to solve for the corresponding eigenvectors. Let’s take each
individually:

λ1 = −1: We plug -1 into eq. (20) and arrive at:([
4 2
4 2

])
~x =~0

We need to solve for null

([
4 2
4 2

])
. Applying the techniques in the previous

practice set, we put the matrix into RREF:[
1 1

2
0 0

]
x2 is a free variable since the second column has no pivots. The solutions are

parameterized by x1 +
1
2 x2 = 0. We set x2 = 1 and solve A~x =~0 to get ~v1 =

[
− 1

2
1

]
.
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Therefore:

(~v1, λ1) =

([
− 1

2
1

]
,−1

)
≡
([
−1
2

]
,−1

)
.

λ1 = 5: We plug 5 into eq. (20) and arrive at:([
−2 2
4 −4

])
~x =~0

To solve for null

([
−2 2
4 −4

]
RREF
=⇒

[
1 −1
0 0

])
, we again set x2 = 1 and solve:

~v2 =

[
1
1

]
.

(~v2, λ2) =

([
1
1

]
, 5

)
For eigenvectors, the direction is what’s important so we can scale it arbitrarily to
match the multiple-choice options given in the original question.

z Problem: Is it true or false that a noninvertible A
n×n

has some λi = 0?

Answer: True

Quick Solution: We can make the following argument: If the matrix is not
invertible, it has a nontrivial null-space.61 Then, by definition, there is some 61 The second bullet under the Some Useful

Information section goes in the "other direc-
tion," showing that if a matrix has λ = 0,
it is noninvertible. This question is almost
identical.

nonzero ~x for which A~x =~0. We pattern match to eq. (18) and notice the equation
is exactly the same if we multiply the right by ~x: A~x = 0~x. This is kind of like
pulling a scalar 0 out of~0, leaving 0~x. Now, we clearly see λ = 0.

z Problem: Is it true or false that for an invertible A with some λ, A−1 has eigenvalue
1
λ ?

Answer: True

Quick Solution: Given invertibility, all λi 6= 0 (see previous question or the Some
Useful Information section. We therefore need not worry about dividing by zero
in creating 1

λ ). We can start at eq. (18): left-multiply both sides by A−1 to get
~v = A−1λ~v =⇒ A−1~v = 1

λ~v. Pattern match to eq. (18) again and we’ve shown
the statement is true!

z Problem: Students A and B calculate ~v for a given λ: ~vA and ~vB are as given below.
Since the two are not the same, A says that B must have made a mistake, but B
reassures A that both are valid. Who should you trust?

~va =

 2
−1
4

 ~vb =

 1
− 1

2
2


Answer: B
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Quick Solution: The key steps here are as follows. First, recognize that ~vA

is just a 2x-scaled version of ~vB, and that they therefore represent the same
direction. Second, understand that this direction is the most relevant information
communicated by an eigenvector. It’s important to understand that the eigenspace
is a subspace, so if the vectors are related by a scalar, they must both lie in the
eigenspace of λ. The direction is same for both students’ vectors, so B is correct.62 62 Let’s assume they aren’t both wrong :-)

z Problem: Is it true or false that A~x1 = λ1~x1 and A~x1 = λ2~x1 =⇒ λ1 = λ2?

Answer: True

Quick Solution: The crux of the question is, can the same eigenvector ~x1 have
distinct associated eigenvalues λ1 and λ2? Thinking about a physical diagram
may help clarify; λ 6= λ2 would require some single initial state or vector aligned
with ~x1 to be scaled by two different values upon being transformed by A! This
cannot happen, so the two eigenvalues cannot be distinct; the statement is true.

z Problem: Is it true or false that A with only real entries can have complex eigen-
values?

Answer: True

Quick Solution: Eigenvalues of a matrix are determined by the solutions to the
characteristic polynomial (eq. (22) for a 2× 2). Quadratic equations have complex
roots whenever the term in the square root is negative. In other words, given

A
2×2

=

[
a b
c d

]
, if (a + d)2 − 4(ad− bc) < 0, the eigenvalues will be complex. This

can certainly happen without complex matrix entries; consider A =

[
1 3
−5 −1

]
where λ1,2 = ±i

√
14.

z Problem: Is it true or false that if A> has eigenvalue λ, A also has eigenvalue λ?

Answer: True

Quick Solution: det(A− λIn)=det
(
A> − λIn

)
since a matrix and its transpose

have the same determinant. λ is therefore an eigenvalue of both A and A> by
definition.

Long Solution: How do we derive the eigenvalues for A? We start at eq. (20) and
set det(A− λIn)= 0. We have to somehow introduce an A> term in this equation,
but we can’t apply it individually to A. Instead, we use the fact that the transpose
is a linear operator, and distribute it as follows: (A− λIn)

> =
(
A> − (λIn)>

)
.

But note that In
> = In so

(
A> − (λIn

)>
) ≡

(
A> − λIn

)
.

Now, we equate and take determinants: det(A− λIn) = det
(
A> − λIn

)
. Why

can we equate these expressions? It’s because a matrix and its transpose have
the same determinant.63 Note that now, by definition, λ is an eigenvalue of both 63 Intuitively, See this article which relies

on the idea of elementary matrices (not
covered) or this more advanced, out-of-scope
stackoverflow post that deals with 16B-level
topics (and beyond, for some answers).

https://www.math.upenn.edu/~ekorman/teaching/det.pdf
https://math.stackexchange.com/questions/598258/determinant-of-transpose
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A and A>. Notice that this statement can also be interpreted as a proof: Prove
that if A has some eigenvalue λ, A> have that same eigenvalue. This gives a
concrete start point and end point to work with. It provides motivation for taking
the transpose of the determinant term in the first place (previously we had no
equations involving A>, but now we do!) So we can then begin manipulating and
rearranging equations as we did above.

z Problem: Given noninvertible A
n×n

, what are the minimum and maximum number

of eigenvalues?

Answer: Min: 1, Max: n

Quick Solution: Given noninvertibility, some λi = 0, so we have at least 1

eigenvalue. Indeed, all eigenvalues can be 0 (such as for 0)! However, noninvert-
ibility does not place any other restrictions on our set of eigenvalues, so all other
eigenvalues can be distinct from this λi. As an example, consider A below which
has λ1 = 0, λ2 = 1, λ3 = 2, λ4 = 3. Therefore, our maximum is n.

A =


1 0 1 0
0 2 0 0
0 0 3 4
0 0 0 0



z Problem: Given the state transition diagram below, find the steady-state vector
with ~x[t] and ~x[0] defined below. If there is no steady-state, show why.

Google

Yahoo

Bing1/2

1/6

1/3

0

2/3

1/3

1/2

1/2

0

~x[t] =

xgoogle[t]
xyahoo[t]
xbing[t]

 ~x[0] =

100
100
100



Answer: ~x∗ =

 75
150
75


Quick Solution: The general procedure is as follows: check if the system has a
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steady-state by creating the state transition matrix and checking if it has λ = 1,
by plugging λ = 1 into eq. (20) and checking if the determinant is zero. This is
identical to computing null(A− I3) and seeing if it’s nontrivial, with the added
benefit of actually figuring out what the steady-state is. Once we solve for the
null-space (here, a single vector, since there’s one free variable in the system) and
re-scale to account for the system being conservative and the initial state having

300 people, we arrive at ~x∗ =

 75
150
75

.

Long Solution: The first step is to establish whether we even have a steady-state,
and we can do so by figuring out if λ = 1 is an eigenvalue of the state transition
matrix. We have to generate this from the diagram’s values:

A =

 1
2 0 1

2
1
6

2
3

1
2

1
3

1
3 0


While one might be tempted to solve for all of the (~v, λ) pairs of A first, this is
actually unnecessary since our problem-solving goal is more narrowly defined.64 64 Well, that and the fact that the formula for

the determinant of anything higher dimension
than a 2× 2 is out of scope.So how do we check if 1 is an eigenvalue? We substitute into eq. (20) and see if

the equation holds!

det(A− λI3) = 0

det


 1

2 0 1
2

1
6

2
3

1
2

1
3

1
3 0

− 1 ·

1 0 0
0 1 0
0 0 1


 = 0

det


− 1

2 0 1
2

1
6 − 1

3
1
2

1
3

1
3 −1


 = 0

We don’t actually know how to compute this directly,65 but we do know how 65 If you do though, you’ll find the equation
is true, so there’s a steady-state. But this still
doesn’t answer the full question of what the
steady-state actually is. However, it can be a
good conceptual check before going through
the full row-reduction of A only to find the
null-space is trivial.

the determinant of a matrix relates to its null-space. Here, we find null(A− I3),
and if it’s nontrivial, then that’s our steady-state! Let’s begin:− 1

2 0 1
2

1
6 − 1

3
1
2

1
3

1
3 −1

 RREF
=⇒

1 0 −1
0 1 −2
0 0 0


We notice that there’s a free variable corresponding to column 3, xbing. We can
parameterize the solutions:

xgoogle = xbing

xyahoo = 2xbing

Setting xbing = 1, we find that xgoogle = 2, xyahoo = 1. So our steady-state

vector has the form ~x∗ =

1
2
1

. Are we done? Well, the system is conservative
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(based on the column sums of the state transition matrix) so we should retain the
same number of people as in the initial state. What we’ve found so far are the
relative proportions of each search engine’s share of total users in steady-state. There
are 300 total people but our current ~x∗ only has 4, so we rescale ~x∗ by multplying

each component by 75 (to make the column sum 300): ~x∗ =

 75
150
75

.

z Problem: Find the matrix A
2×2

that reflects vectors in R2 about the line through the

origin in the direction of ~vr below. See fig. 13 for a visual aid. x

y

~vr

~x1

~x1,r

~x2

~x2,r

Figure 13: Diagram showing how various
(dashed) vectors should be reflected about[
3 2

]> (the solid vector).

Answer:

[
15/39 12/13

12/13 −15/39

]
Quick Solution: This question requires a couple realizations; there is little

symmetry to the given vector, so most directions (such as ~x2 =
[
3 0

]>
in fig. 13)

will end up at unintuitive points ( ~x2,r) that don’t help us solve the problem. But
there are two useful directions; exactly aligned with and exactly perpendicular to
~vr. These have predictable, "nice"-valued reflected vectors. So we can use that to
set up the following matrix-vector equations:[

a11 a12

a21 a22

] [
3
2

]
=

[
3
2

]
[

a11 a12

a21 a22

] [
−2
3

]
=

[
2
−3

]
We can also form a singular, more directly solvable matrix-vector equation that

combines both of the above sets of equations. This way, it might be easier to apply
a standard solving technique like Gaussian Elimination. We write this combined
equation as follows: 

3 2 0 0
0 0 3 2
−2 3 0 0
0 0 −2 3




a11

a12

a21

a22

 =


3
2
2
−3


We can solve either of these forms for the variables of interest (a11, a12, a21, a22)
and once we put them back into the original matrix form, we arrive at:

A =

[
15/39 12/13

12/13 −15/39

]
≡
[

5/13 12/13

12/13 −5/13

]

Long Solution: A natural followup question is, why is this question in this
practice set? What’s the connection to eigen-stuff? Well, note that we could have
solved this question another way after the initial realization.66 Instead of setting 66 If this feels a lot longer, that’s because it is.

In most situations for small cases, you’d likely
just solve the system in the quick solution.
But the concepts here are worth understand-
ing; the steps are here for completeness.

up a system of equations to solve directly, we could also have seen that 1 and -1
must be eigenvalues of the matrix we’re looking for. The scaling factor for vectors
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aligned with ~vr is 1, so one of our pairs is
([

3
2
]
, 1
)
. Similarly, the other pair is([ −2

3

]
,−1

)
. Using these and eq. (20), we construct the following:

(A− λ1I2)~x =~0[
a11 − 1 a12

a21 a22 − 1

] [
3
2

]
=~0[

3a11 − 3 + 2a12

3a21 + 2a22 − 2

]
=~0[

3a11 + 2a12

3a21 + 2a22

]
+

[
−3
−2

]
=~0[

3a11 + 2a12

3a21 + 2a22

]
=

[
3
2

]
[

a11 a12

a21 a22

] [
3
2

]
=

[
3
2

]
Now, for the next pair:

(A− λ2I2)~x =~0[
a11 + 1 a12

a21 a22 + 1

] [
−2
3

]
=~0[

−2a11 − 2 + 312

−2a21 + 3a22 + 3

]
=~0[

−2a11 + 3a12

−2a21 + 3a22

]
+

[
−2
3

]
=~0[

−2a11 + 3a12

−2a21 + 3a22

]
=

[
2
−3

]
[

a11 a12

a21 a22

] [
−2
3

]
=

[
2
−3

]
It’s the exact same as before if we expand the equations out! But now, we’ve

made the connection to eigen-concepts more explicit.



Practice Set 4B: Change of Basis
This chapter is largely out-of-scope for Fa20

(for details, consult the course notes, Piazza, or
a TA).

Relevant Equations/Information

Defining a Change of Basis: Previously we’ve seen that a basis for a vector space

is a minimal spanning set of vectors. We can also define the standard basis vectors.

For example, the standard basis for R3 is the set E below:

E =
(

î, ĵ, k̂
)

≡ (~e1, ~e2, ~e3)

≡




1

0

0

 ,


0

1

0

 ,


0

0

1




Take ~x =
[
1 3 −4

]>
. We can represent this vector as a linear combination of

the standard 3D basis vectors: ~e1 + 3~e2 − 4~e3. Let’s go through a couple examples

using a simpler 2D vector ~v =

2

5

. For later, let’s define the elements of ~v to be v1

and v2.

~e1 =
[

1
0

]

~e2 =
[

0
1

]
~v

Figure 14: Standard Basis: a simple 2D vector,

making explicit how it’s a linear combination

of the standard 2D basis vectors.

fig. 14 shows how we plot ~v. Simple, right? The point is to recognize that if

you’re asked to plot a vector, the basis is normally implicit as the standard basis

vectors, so you’d have generated the same plot. But what if instead of using the

standard basis, you actually had:

E′ =

 1

−1

 ,

 0

0.5


Then your perspective is different because your defining grid has changed! To draw

the new vector:

2~e1
′ + 5~e2

′ =

 2

0.5


This means that if we preserve the coordinates of the vector, the physical vector

changes from

2

5

 to

 2

−0.5

, as in fig. 15. But oftentimes, we actually want to do the
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opposite: preserve the geometrical vector but modify its coordinates such that when

plotted in the new basis, the original and final vector are physically the same. This is

what’s commonly called a change of basis operation on a vector. We are re-expressing

the coordinates of ~v in the new basis E′.

~e1 =
[

1
0

]

~e2 =
[

0
1

]

~e1
′− =

[ 1
−1
]

~e2
′ =

[
0

0.5

]

~v

Figure 15: New + Standard Bases (same

coordinates): notice that ~v1 has the same

coordinates as it did in the Standard Basis

(2 steps of ~e1
′, 5 steps of ~e2

′) but the physical

vector is different. To show what the vector

looks like in the previous basis, the standard

basis grid is included (blue).

This requires solving a simple system of equations: we know that the basis

vectors define the linear transformation matrix:

A =


| |

~e1
′ ~e2

′

| |


Remembering eq. (8), we recognize that we now need to solve for the scalars that

multiply each of the new basis vectors, to produce the same physical vector as before:
| |

~e1
′ ~e2

′

| |


v′1

v′2

 =

v1

v2

 ≡ ~v (25)

Solving, we find that ~v′ =

 2

14

. We show this in fig. 16.

~e1 =
[

1
0

]

~e2 =
[

0
1

]
~v

~e1
′− =

[ 1
−1
]

~e2
′ =

[
0

0.5

]

Figure 16: New + Standard Bases (same physi-

cal vector): notice that ~v1 is now physically the

same as in the Standard Basis but we had to

solve for the coordinates in the new basis. The

standard basis grid is again in blue.

Note that in both cases, we’re choosing a new basis; the only question is whether

we preserve the coordinates (which are the mathematical representation) and change

the physical vector in accordance with the new basis, or preserve the physical vector

and find the new coordinates. This can be pretty conceptually confusing, but

hopefully figs. 14 to 16 help.

The question now is, how do we solve eq. (25) in general? If given a vector ~v

expressed with coordinates in the standard n-dimensional basis E, then we can solve

for the coordinates ~v′ in a different n-dimensional basis A with:

~v′ = A−1~v (26)

A is formed with the columns of the new basis. To do the opposite (basis A → E),

we apply A:

~v = A~v′ (27)

Finally, suppose that we’re given ~v with coordinates in an arbitrary basis P

(matrix with columns ~p1, . . . , ~pn), and we want to change to another arbitrary basis

Q with columns ~q1, . . . , ~qn. We must apply the transformation Q−1P. This follows
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from first transforming ~v to the standard basis from P, and then transforming to the

new basis Q.67 67 Recall that we left-multiply vectors with
matrices to apply linear transformations.

Matrix Change of Basis: If you have a good conceptual grasp of the ideas presented

above, then this part will be quite intuitive. We can apply our knowledge to linear

transformations to understand what it means to change the basis of a matrix. Given

transformation T
n×n

with input ~v1 and output ~v2, we can apply our column-wise

interpretation of the matrix-vector product as in eq. (8), but now, we must take care

of the fact that our vectors may lie in a different basis than E.

Suppose we have basis vectors~a1, . . . ,~an forming A
n×n

, and vectors ~v1, ~v2 repre-

sented in this basis: ~vi = v′i,1~a1 + · · ·+ v′i,n~an.68 We can also represent T in this basis 68 Each vi,k is the kth element of the vector ~vi .

as T′.

We start with ~v1 = A~v1
′ and ~v2 = A~v2

′ as follows from eq. (27). From there,

since T~v1 = ~v2 by definition of linear transformation T, we can plug in: TA~v1
′ =

A~v2
′ =⇒ A−1TA~v1

′ = ~v2
′. Clearly, just as how we had T~v1 = ~v2, we have an

analogous transformation in the new basis: T′~v1
′ = ~v2

′, where T′ = A−1TA. The

diagram adapted the course notes in fig. 17 clarifies that T′ is equivalent to A, then

T, then A−1. Just follow the arrows!

~v1
T //

A−1

��

~v2

A−1

��

~v1
′

A

OO

T′ // ~v2
′

A

OO

Figure 17: Diagram showing how to compose

various matrices to go from one node to

any other. Remember to multiply successive

transformations on the left!

Diagonalization: What’s the point of learning to change bases? The standard basis is

perfectly nice and intuitive, so it seems like we’re needlessly adding complexity. But in

practical applications, matrix operations form the core of some very computationally

heavy algorithms. This means that we need to be able to easily invert matrices,

raise them to high powers, and multiply them commutatively; all of these can be

accomplished with diagonal matrices, where all entries not on the diagonal are zero.

First, we must choose a diagonalizing basis A that consists of the n eigenvectors

of T. This is only possible if T is diagonalizable, which requires it to have n linearly

independent eigenvectors.69 Then, to figure out how T transforms ~v1, we write 69 Note this is different from the n columns
being independent!

~v1 = v′11~a1 + . . . + v′1n~an and compute:

T~v1 = Tv′11~a1 + · · ·+ Tv′1n~an

= v11 (T~a1) + · · ·+ v1n (T~an)

= v11 (λ1~a1) + · · ·+ v1n (λn~an)

The last step follows from eq. (18), the definition of (~v, λ) pairs. Now, we apply
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eq. (8) in a clever way, using the middle matrix (diagonal!) as a sort of "sifting"

matrix; each row only has one nonzero value, so we only multiply the v1i~ai value by

the corresponding λi.

T~v1 =


| | |

~a1 ~a2 · · · ~an

| | |





λ1 0 0

0

0

0 0 λn




v′1
v′2
...

v′n


Notice now we have an equation of the form:

T~v1 = AD~v1
′

T~v1 = ADA−1~v1

⇓

T = ADA−1

Here, D is the diagonal matrix containing the eigenvalues of the transformation!

One useful result is that:70 70 This follows from:

Tk =
(

ADA−1
)k

Tk =
(

ADA−1
) (

ADA−1
)

. . .
(

ADA−1
)

︸ ︷︷ ︸
k times

Tk = AD · In ·D · In ·D . . . In ·DA−1

Tk = ADkA−1

Tk = ADkA−1 (28)

Since D is easy to raise to high powers (Dk contains all diagonal entries raised to the

kth power), the computation of numerous transformations becomes much easier!

Problems

z Problem: Given ~v in the standard basis has coordinates as given below, what are
the coordinates of ~v in the basis formed by vectors ~a1, ~a2, and ~a3?

~v =

1
2
3



~a1 =

1
0
1

 ~a2 =

0
1
0

 ~a3 =

1
1
0



Answer: ~v′ =

 3
4
−2


Quick Solution: We apply eq. (26) and the result follows directly. To show the
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steps:

~v′ =


1 0 1

0 1 1
1 0 0



−1 1

2
3


=

 0 0 1
−1 1 1
1 0 −1


1

2
3


=

 3
4
−2



z Problem: Is it true or false that transformation T with eigenvectors ~v1, ~v2, and ~v3

as below is diagonalizable?

~v1 =

1
1
2

 ~v2 =

0
2
4

 ~v3 =

0
1
0


Answer: True

Quick Solution: We need to check if the eigenvectors are linearly indepen-
dent. We can perform Gaussian Elimination to determine if they are linearly
independent: 1 0 0 0

1 2 1 0
2 4 0 0


R2−R1→R2

R3−2R1→R3
=⇒

1 0 0 0
0 2 1 0
0 4 0 0


R2↔R3 =⇒

1 0 0 0
0 4 0 0
0 2 1 0


1
4 R2→R2

R3−2R2→R3
=⇒

1 0 0 0
0 1 0 0
0 0 1 0



We have an identity matrix on the right, so the vectors are linearly independent,
and T is diagonalizable.

z Problem: Using diagonalization if possible, compute Tk.

Tk =

[
1 0

0.5 0.5

]k
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Answer: Tk =

[
1 0

1− 0.5k 0.5k

]
Quick Solution: We follow the diagonalization procedure: first, compute the
(~v, λ) pairs of T. Then, ensure the eigenvectors are linearly independent. If
they aren’t, then T can’t be diagonalized! Compose the matrix containing the
eigenvectors as columns (A), which is the diagonalizing basis. Also compute it’s
inverse. Finally, form D, the diagonal matrix containing the eigenvalues. Raise
D to the kth power, then compute Tk = ADkA−1. We carry out these steps in the

long solution, and the answer should follow: Tk =

[
1 0

1− 0.5k 0.5k

]
Long Solution: We solve eq. (22): λ2 − (1 + 0.5)λ + (0.5− 0) = 0 =⇒ λ1 =

1, λ2 = 0.5. Plugging into eq. (20), we can solve for each ~vi of T:71 71 If these steps aren’t clear, I recommend
checking out the procedure to compute a
null-space.null

([
0 0

0.5 −0.5

])
=⇒ ~v1 =

[
1
1

]

null

([
0.5 0
0.5 0

])
=⇒ ~v2 =

[
0
1

]
~v1 and ~v2 are linearly independent, so we proceed. We can form the following

matrices:

A =

[
1 0
1 1

]
A−1 =

[
1 0
−1 1

]
D =

[
1 0
0 0.5

]
Raising D to the kth power yields:

D =

[
1 0
0 0.5k

]
since we can directly raise the entries individually to the kth power for a diagonal
matrix. Now, we compute using eq. (28):

Tk =

[
1 0
1 1

] [
1 0
0 0.5k

] [
1 0
−1 1

]

=

[
1 0

1− 0.5k 0.5k

]



Practice Set 5: Introduction to Circuit
Analysis

Relevant Equations/Information

Circuit Terminology and Elements: There are 3 key quantities to be familiar with

before analyzing a circuit schematic or diagram, such as the one in fig. 18.

• Current [A, amperes]: The flow of charge Q through wires and circuit elements in

a certain amount of time.72 For example, a wire may have 1 of current flowing 72 Note it’s the negative charges (electrons, e−)
as opposed to the positive charges (protons)
that actually move, but the direction of a
current arrow in a schematic denotes the
direction in which positive current flows.

through it. The formula relating current to charge is:

I =
dQ
dt

(29)

• Voltage [V, volts ≡ J
C ]: Potential energy [joule, J] needed to move charge [coulomb,

C] from one point to another. A single scalar value called the potential is associated

with every point in a circuit, and differences in potential are called voltages. We

almost always only care about voltages, not potentials. When talking about the

voltage across a circuit element, we refer to the difference in potentials at the ends

of the circuit element.

−
+VS

IS

R

Figure 18: An example circuit to help form an

association between terms and symbols. We’ll

begin analyzing circuits like these soon.

A possible point of confusion: when we say (or you read) that a specific

point has a certain voltage, this seems to contradict the above, since we don’t have

two potential values to subtract to get a voltage. But in these cases, the implicit

reference point is ground ( ), which is at the zero potential point, so the voltage

between a point and ground is identical to the potential at that point.

t

L

W

IR

Figure 19: A simple model of a resistor with

resistivity ρ, length L, cross-sectional area W · t.
Note the direction of current flow; the same

physical object can have different resistances

in different directions (such as if current

flowed from top to bottom).

• Resistance [Ω, ohms]: A material’s innate chemical structure determines how

easily it lets charges move through it. The more restrained the movement, the

higher the resistance. This is modeled by resistor R in fig. 18; a more realistic

model is in fig. 19. There is a formula for R that accounts for the dimensions of a

material, in addition to its innate chemical properties:

R =
ρL
A

(30)
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ρ = material’s intrinsic resistivity, L = length, A = cross-sectional area. The longer

a resistive material, the less easily charges can pass through it. On the other hand,

the wider the area, the easier it is to pass through. ρ is typically a constant in this

class, though it can sometimes vary with temperature.

What follows is a brief description of each circuit element you’ll need to know

about; table 1 presents a condensed summary of the relevant features for each and

presents this information visually.

1. Voltage Source: A voltage source enforces that a specific voltage is always present

across its + and − terminals, no matter what the rest of the circuit looks like. The

polarity (or direction) of the source is given by the + and − signs, and the potential

at the + terminal is always VS greater than at the − terminal. A voltage source

can support any current, the value of which is set by the rest of the circuit.

2. Current Source: A current source always drives IS amount of current to flow in the

direction of the arrow (as seen in table 1) regardless of the rest of the circuit. The

voltage across a current source is determined by the rest of the circuit.

3. Resistor: The I-V relationship of a resistor is called Ohm’s Law, which states that:

V = IR (31)

This formula can be solved for voltage or current individually, as in table 1.

4. Wire: A wire "drops" zero voltage across it (so the voltage between any two points

on the same wire is always zero).73 An ideal wire can support any current. 73 Alternatively, all points on the same wire
are at the same potential. This will connect to
the idea of nodes and supernodes presented
below.

5. Open Circuit: No current is allowed to flow through an open circuit, as indicated

by the gap, but the voltage drop across two terminals of an open connection can

be anything, as set by the rest of the circuit.

Definition of a Node: A node, sometimes called a junction, is any place in the circuit

where two or more of the elements in table 1 meet. Nodes are also, by definition, all

at the same potential. Sound familiar? Above, we said that all points on a wire are

also at the same potential, so a simple way to identify nodes in a circuit is to trace

the portions that are connected by wires. For two points to be part of the same node,

they must have a path between them consisting of only wire. Also, all wire segments

are part of some node, so initially, highlighting portions of a circuit different colors

can help. See fig. 20 and note how there are two nodes in the circuit. fig. 21 is a more

complex example, but the exact same logic applies.
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Name Symbol Velem Ielem I-V Characteristic

Voltage Source

−
+Vs

Ielem −

+

Velem

VS Any

Velem

Ielem VS

Current Source

Is

Ielem −

+

Velem

Any IS

Velem

Ielem

IS

Resistor

R

−

+

Velem

Ielem
IelemR Velem

R

Velem

Ielem

slope= 1
R

Wire
−

+
VelemIelem

0 Any

Velem

Ielem

Open Circuit

−

+

Velem

Ielem

Any 0

Velem

Ielem

Table 1: A list of all the circuit elements
we’ll see, including their symbols and IV
characteristics. For an explanation of how
these graphs were derived, what they mean,
and why they match the element’s behavior,
check the previous page.
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−
+VS

IS

R

IR

+

−

VR

Figure 20: Note that there are two nodes in

this circuit, since there are two sections of

wire separated by circuit elements. We can get

anywhere from blue→ blue without crossing

circuit elements, but we cannot pass blue→
red similarly.

Passive Sign Convention (PSC): Take a look at the resistor labeling of current and

voltage for fig. 20. In particular, the current IR comes out of the − terminal of R and

would enter the + terminal at the top. This labeling mechanism is very important to

keep consistent, and it is called passive sign convention. A resistor is a passive element;

it just lets charges flow through it, changing their potential energy in the process, so

when labeling the voltage and current for this element, we must be self-consistent;

if not, our analysis of circuits will be wrong. Notice that the voltage source seems

to violate passive sign convention; the current IS is certainly not coming out of the

− terminal of VS! However, voltage and current sources can be though of as active;

they do not follow passive sign convention.

KCL (Kirchoff’s Current Law): All currents entering a node/junction must leave

the junction. This follows from the physical principle that charge is not accumulating

at any point in the circuit over time. Take a look at the magenta node in fig. 21: here,

I0 = I1 + I2. Mathematically:

∑ iin = ∑ iout (for each node) (32)

−
+

5V

R0 I0

R 2I2

R
5

I5

R
1

I1

R 4

I4

R3

I3

Figure 21: There are 5 nodes in this larger

circuit! This is a variant of the wheatstone

bridge, a very common circuit used in sensor-

based measuring applications. It’s likely to

show up if you begin working more with

circuits.

KVL (Kirchoff’s Voltage Law): If we choose a closed loop (any closed loop) in our

circuit and go around it, adding up the voltages as V+ −V− (making sure to keep

the signs correct), the sum will always be 0V. That is:

∑
closed loop

Vi = 0 (33)

Let’s take a look at an example, using fig. 20. Start at the bottom left corner; we

are at a point on the wire, and our total voltage is 0. As we go up and include the

voltage source, we go from the − terminal to the + terminal and the magnitude is

5V. In this case, we are going from lower potential to higher potential by crossing

the voltage source so our total voltage increases by 5V. Then, we cross the top wire;

no change in voltage occurs. When we come down across the resistor, the potential

decreases since we go from higher potential to lower potential. Therefore, our total

voltage decreases by VR.

We now arrive back at the same blue node we started at (we cross another

wire, which contributes zero drop in potential). By KVL in eq. (33), our equation is

5V + VR = 0. Therefore, VR = −5; we lose 5V of potential when crossing the resistor.

From a physical standpoint, this makes sense because the charges have less potential
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energy at the bottom of the resistor compared to at the top; it took energy to go

through R.

As another example (or rather, a few), from fig. 21 and PSC we have: 5V−VR0 −

VR2 −VR5 = 0, −VR3 −VR4 + VR5 = 0, and −VR1 −VR4 + VR5 + VR2 = 0. Note that

these are all closed loops, and we follow PSC.

Systematic Circuit Analysis through Nodal Voltage Analysis: By applying

KCL to the nodes in a circuit, and taking advantage of the circuit elements’ own

formulas (such as Ohm’s Law for resistors), we can formulate a system of equations

that can be solved for all the useful information in a circuit.74 This is commonly 74 The standard linear algebraic principles
from the previous chapters can be applied
to solve this system, including Gaussian
Elimination. For example, if you create an
augmented matrix, proceed with Gaussian
Elimination, and arrive at an inconsistent row,
then the corresponding circuit cannot exist, or
there is a contradiction somewhere!

referred to as Nodal Voltage Analysis, or NVA. Using NVA, we can find the potential

at all nodes, and the currents through all elements. A thorough worked example

carrying out this analysis more completely, from setting up the system of equations

to solving it numerically, is described in the next chapter.75

75 Remember this: NVA, applied correctly,
can always solve a circuit completely. If faced
with a problem where simplifications are
hard to apply, begin with NVA. In the next
chapter, I select an example that’s a bit more
complicated than a voltage divider; it might
be a good idea to review the voltage divider
example from the course notes first. The
example here is also a good one.

Algorithm Steps:

1. Select a Ground Node: Arbitrarily select one of the circuit’s nodes to assign as a 0V

ground. Typically this is the − terminal of the voltage source.

2. Label the "Easy" Node: If the − terminal of a voltage source is ground, we can

directly label the potential of the + terminal as VS.

3. Label other Nodes: Assign node labels of the form ui for all unlabeled nodes.

4. Label Element Voltages and Currents (PSC): For all circuit elements, choose an

arbitrary current direction.76 Then, label voltage polarities consistently with PSC. 76 If your choice of current direction for any
elements are "wrong," the final answer will
simply be negative, so no harm done.

5. KCL For Unknown Nodes: For each node, write out the KCL equation.

6. Apply Ohm’s Law: For each circuit element except voltage sources (for which the

current will be determined by the rest of the circuit), solve for current using node

potentials and element values (such as resistance values).

7. Make Substitutions back into KCL: Take these current expressions in terms of other

variables, and plug back into the node KCL equations.

8. Form a Matrix and Solve: Treating every unknown (node potential) as a variable,

form an augmented matrix to reduce! Any terms not containing a node potential

will be treated as constants.

https://www.eecs16a.org/lecture/mod2/nva.html
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Problems
The content

problems ratio is rather large for this prac-
tice set, but this one is a sort of introduction
that sets the stage for later chapters.

z Problem: Is it true or false that any amount of current can go through a voltage
source?

Answer: True

Quick Solution: By definition, an ideal voltage source will maintain a specified
potential difference across its terminals, and can support any current. See the I-V
relationship in table 1; note that there is no limit on the current.

z Problem: Is it true or false that any amount of voltage can be dropped across a
current source?

Answer: True

Quick Solution: As above, we apply the definition; an ideal current source will
maintain a specified current through itself regardless of the voltage dropped across
it. The I-V relationship in table 1 reinforces that there is no limit on the voltage.

z Problem: Is it true or false that in fig. 22, VR1 and VR2 are the same?
−
+VS

IS

R1

IR1

R2

IR2

+

−

VR1

+

−

VR2

Figure 22: These resistors are connected
in parallel, meaning their terminals share
identical nodes. This is explained more later.

Answer: True

Quick Solution: We apply KVL going in a closed loop (direction doesn’t matter
but we choose clockwise) including R1 and R2: VR2 − VR1 = 0 =⇒ VR1 = VR2 .
Alternatively, if you’re like me and prefer forming loops with the voltage source
included, we arrive at the same result:{

VS −VR1 = 0
VS −VR2 = 0

Solving, VR1 = VR2 .

Long Solution: More of an extended margin note: If you’ve studied ahead a bit
or are visiting this resource as review, you may recognize that these resistors are in
parallel. But what exactly does this mean? Any two circuit elements are in parallel
if their two terminals share the exact same two nodes.

Here’s why it can be useful to recognize when elements are in parallel; by
sharing terminal nodes, the elements are forced to have the same voltage drop
across them. Consider forming a KVL loop that goes from one node to the other
through the first element, but on the reverse path, goes through the other element.
The equation is Velem 1

−Velem 2
= 0, keeping track of polarities, and the voltage

drop must therefore be identical for the two elements. In the same way, we can
inductively show that if we can have any number of elements in parallel (sharing
end nodes), the voltage drop across all of them must be the same!

z Problem: Is it true or false that in fig. 22, if R1 = 2kΩ and R2 = 3kΩ, IR1 and IR2

are the same?
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Answer: False

Quick Solution: We apply KVL as in eq. (33) and Ohm’s Law as in eq. (31): The
previous problem establishes that VR2 = VR1 so we use that result directly and
substitute numbers:

VR2 −VR1 = 0

IR2 · 3kΩ− IR1 · 2kΩ = 0

IR2 · 3kΩ = IR1 · 2kΩ
IR2

IR1

=
2kΩ
3kΩ

6= 1

Evidently, the currents are not equal, so the answer is false. In fact, in the process
of answering this question, we have actually derived an important result; see the
long solution for more.

Long Solution: A useful principle to keep in mind is that current will divide in
such a way that the path of less effective resistance77 gets proportionally more 77 We’ll cover this idea of apparent or equiva-

lent resistance when discussing Thevenin and
Norton equivalent circuits.

current. Let’s take a simple example: if current IS enters a junction, and there are
two exiting branches of resistances R1 and R2 such as in fig. 22, then each branch
current is:

IR1 = IS
R2

R2 + R1
(34)

IR2 = IS
R1

R2 + R1
(35)

Notice that if the resistance of R2 goes up, that branch must receive less of the IS

current (which itself will change). This logic will be made more clear when we
begin analyzing circuits in more depth.

z Problem: In a circuit with n total nodes and k non-wire elements, how many
equations (Ohm’s Law, KCL, and KVL) do we need to solve the circuit for all node
potentials and element currents?

Answer: n + k− 1

Quick Solution: We need 1 equation for each variable we want to solve for
(follows from all the linear algebra knowledge we have from before). But we also
must define a ground node that has a determined potential of 0V. This ground
node doesn’t really constitute an equation, hence the −1 in the answer. For the
remaining information, we therefore need n + k− 1 equations to solve the system.
If you consider setting ground as a reference to be an equation, then we need n + k
equations. This is a useful result to remember when performing nodal analysis.

z Problem: Suppose you’re given the circuit in fig. 23. How many nodes do we
need to label in order to perform nodal analysis, including ground?

−
+VS R1

R5

R2

R3

R4
IS

Figure 23: Circuit with 2 independent sources
and 5 resistors!

Answer: 4

Quick Solution: To perform nodal analysis, we need to label all nodes in the
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circuit. This is an important result, because otherwise, we won’t have enough
equations to solve the circuit for a unique solution. Here, there are 4 nodes; they
are colored in fig. 24. By labeling these 4 nodes, including the ground node (red),
we have a total of 11 equations to work with; 4 from the nodes (we get the potential
at ground directly, ug = 0), and 7 from the circuit elements. This would allow us
to solve the system!

−
+VS R1

R5

R2

R3

R4
IS

Figure 24: The 4 nodes are colored!

z Problem: How many nodes are in the circuit given in fig. 25? The node potentials
and currents are for the next problem and don’t affect the answer to this question.

Answer: 3

Quick Solution: We follow the same procedure as before; how many sets of
wires are there, that are separated by circuit elements? There’s the top wire, the
ground wire, and the wire between R1 and R2.

z Problem: Suppose you have a labeled circuit diagram, as in fig. 25. Using passive
sign convention, add voltage polarities (+ and −) for R1 and R2.

Answer:

R1 : +

−

VR1

IR1

R2 : −

+

VR2

IR2

−
+VS

IVS R1

IR1

R2

IR2

u1

u2

Figure 25: Partially labeled voltage divider
circuit.

Quick Solution: According to PSC, for passive circuit elements such as resistors,
current will flow from the positive terminal to the negative terminal.

Long Solution: The current must be coming out of the negative terminal of each
resistor and it will enter the positive terminal. Only if PSC is applied correctly
will the current and voltage labeling be self-consistent. For R1, the current is given
to be going from bottom to top, u2 to u1, so the top side of R1 must be negative.
Similarly, for R2, since the current goes top to bottom, the bottom must be the
negative terminal.

z Problem: For the same circuit as above, fig. 25, what are all the equations we can
write out to solve the circuit for all node potentials and branch78 currents? 78 Branches are the inward and outward paths

for a junction.

Answer:

IR1 = IVS

0 = IR2 + IR1

u1 = VS

u2 − u1 = IR1 R1

u2 − 0 = IR2 R2
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Quick Solution: As per step 2 of the NVA process ("easy" node), we immediately
see that u1 = VS. Then, for each node and circuit element, we can write out
the KCL and Ohm’s Law Equations, as per the steps to perform NVA. Then,
by noticing linear dependence, we arrive at the equations above. See the long

solution for details!

Long Solution: We have u1=VS. There is now only 1 node potential we do not
know; u2. To be thorough, we can apply KCL to each of the 3 nodes, in the same
form as eq. (32):

1. u1 : IR1 = IVS

2. u2 : 0 = IR2 + IR1

3. ground : IVS + IR2 = 0

We then write out the resistor equations using Ohm’s Law, eq. (31):

1. R1 : VR1 = IR1 R1 = u2 − u1

2. R2 : VR2 = IR2 R2 = u2 − 0

Note that we have 6 total equations, but only 5 in the answer. Also, since we
have 1 proper (non-ground) node and 3 circuit elements, we should need only
4 equations in addition to the to solve the circuit. This problem shows that we
can easily create redundant equations; note that our KCL equation for ground is
linearly dependent with the other two KCL equations. After some rearranging,
we arrive at the same equations in the answer.



Practice Set 6: Circuit Analysis, Resis-
tive Modeling and Power

Relevant Equations/Information

A Worked NVA Example: Let’s systematically analyze the circuit in fig. 26 to solve

for all currents and node potentials. I’ll go through the steps both symbolically and

numerically, using the following component values: VS = 12V, R0 = 2kΩ, R1 = 2kΩ,

R2 = 5kΩ, R3 = 12kΩ, R4 = 6kΩ, R5 = 18kΩ.

−
+VS

R1

R2

R4

R5

R3

R0

Figure 26: Looks complicated! But we can

systematically analyze this circuit just like any

another.

−
+VS

R1

R2

R4

R5

R3

R0

u1

u2

u3

Figure 27: Same as fig. 26 but with colored,

labeled nodes.

−
+VS

IS
R1

IR1

R2

IR2

R4

IR4

R5

IR5

R3

IR3

R0

IR0

u1

u2

u3

+

−

VR0

+

−

VR1

+

−

VR2

+

−

VR3

+

−

VR4

+

−

VR5

Figure 28: Now with currents and voltages.

And yes, it is cluttered in these margins :(

1. Select a Ground Node: I chose the − terminal of the voltage source here to assign

as a reference (see fig. 27), but you could choose any node; your results will be

self-consistent.

2. Label the "Easy" Node: I’ve colored all four nodes for convenience. Now, the red

node at the top has known potential of u1 = VS = 12V.

3. Label other Nodes: Done!

4. Label Element Voltages and Currents (PSC): These have been added in fig. 28.

5. KCL For Unknown Nodes: Alright, now the work begins. Let’s write out our 2 KCL

equations using eq. (32):

u2 : IR1 = IR2 + IR5

u3 : IR2 = IR3 + IR4

Notice that we omit the ground node KCL equation because it is linearly dependent

with the 2 above, and the potential at u1 is a known quantity.

6. Apply Ohm’s Law: We have the following circuit element equations:

R0 : VR0 ≡ u1 = IR0 R0

R1 : VR1 ≡ u1 − u2 = IR1 R1

R2 : VR2 ≡ u2 − u3 = IR2 R2

R3 : VR3 ≡ u3 = IR3 R3

R4 : VR4 ≡ u3 = IR4 R4

R5 : VR5 ≡ u2 = IR5 R5
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Note that for each voltage, we expressed it in terms of our unknowns, which are

the individual node potentials u2 and u3.

7. Make Substitutions back into KCL: By taking the equations above (dividing both

sides by resistance to isolate the current terms) and making substitutions:79 79 With practice, you can condense steps 5-7
into a single step. Also, note that not all of the
circuit element equations were needed (such
as for R0).u2 :

u1 − u2

R1
=

u2 − u3

R2
+

u2

R5

u3 :
u2 − u3

R2
=

u3

R3
+

u3

R4

8. Form a Matrix and Solve: Now, we have a system of 2 unknowns (the node potentials

of u2 and u3) and 2 equations! The resistances and the potential at u1 are known.

Let’s rearrange terms so the augmented matrix structure is easier to compose:

u2

R2
− u3

R2
+

u2

R5
+

u2

R1
=

u1

R1
u2

R2
− u3

R2
− u3

R3
− u3

R4
= 0

Now, grouping like terms:

u2

(
1

R2
+

1
R5

+
1

R1

)
+ u3

(
− 1

R2

)
=

u1

R1

u2

(
1

R2

)
+ u3

(
− 1

R2
− 1

R3
− 1

R4

)
= 0

The augmented matrix is now: 1
R2

+ 1
R5

+ 1
R1

− 1
R2

u1
R1

1
R2

− 1
R2
− 1

R3
− 1

R4
0

 ≡
 1

5 + 1
18 + 1

2 − 1
5

12
2

1
5 − 1

5 −
1

12 −
1
6 0


Note that multiplying both equations by 1000 makes the numbers a bit easier

to work with. Solving by using Gaussian Elimination, u2 = 9V and u3 = 4V.

Using these and previous information, we can now calculate all the element

currents: IR0 = 12V
2kΩ = 6mA, IR1 = 12V−9V

2kΩ = 1.5mA, IR2 = 9V−4V
5kΩ = 1mA,

IR3 = 4V
12kΩ = 1

3 mA, IR4 = 4V
6kΩ = 2

3 mA, IR5 = 9V
18kΩ = 0.5mA. And we’re done!

−
+VS

R1

R2

Vmid

Figure 29: The ubiquitous voltage divider

circuit. Get used to seeing and working with

this!

Voltage Divider Circuit: As it turns out, the voltage divider circuit topology,

introduced briefly (and only by name) in the previous chapter, is quite critical to

understand. The course notes also analyze the voltage divider circuit (fig. 29) in

detail, but the most important thing to recognize is the following:

Vmid = VS
R2

R1 + R2
(36)

This is because the current in the circuit is the same everywhere (we have

a single loop), and by KVL, the sum of the voltage drops must be 0. That is:
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VS− IR1 R1− IR2 R2 = 0. Each current can be re-expressed in terms of node potentials:

IR1 = VS−Vmid
R1

and IR2 = Vmid
R2

. Solving and rearranging, we arrive at eq. (36).

In this way, we can actually tune our resistor ratios80 to output only a portion 80 The actual values don’t matter here! We only
care about the ratio of each resistor to the sum,
since there are portions of the total VS voltage
dropped across each resistor, and the sum of
these voltage drops is always VS.

of the input, or source, voltage VS. Note that Vmid will always be less than VS (we

would need R2 = ∞Ω to achieve Vmid = VS). Sometimes, Vmid will be written as

Vout or even Vo, since we often measure the voltage dropped across R2 as our circuit

output voltage.

1D Resistive Touchscreen: A Whirlwind Summary:81 The resistive touchscreen 81 Please note that this section is a very com-
pressed version of the 1D touchscreen pre-
sented in the course notes.is a very practical and powerful application of the concepts covered thus far, especially

the voltage divider! Touchscreens are on almost every device, and using the concepts

we know, we can start to understand how they work. Often, given a touchscreen, we

want to find the position where it is touched. Let’s start with a 1D example, as in

fig. 30. Finding the touch position on the top (magenta) layer is the same as finding
Ltouch

L ≡ Ltouch
Ltouch+Lrest

.

+x

+y

Ltotal ≡ L

Ltouch Lrest

Figure 30: Resistive touchscreen, 1D prelimi-

nary model. Notice the connection between

the top and bottom conductive layers at the

point where the finger touches the screen.

Excuse the very poorly tikz-drawn hand,

LATEX should not be used as a substitute for a

drawing tool. But at least it has 5 fingers!

We can refer to eq. (30) in order to approach the touchscreen from a more

geometrical perspective. The entire length of the touchscreen can be thought of as a

resistor, since the top layer’s material has some resistivity ρ. It also has length Ltotal,

and let’s say that from a side-view, it has area A. Note that this is not the area of the

top surface of the touchscreen that the finger is coming from; the relevant area is that

where current flows across, and here, the current flows left-to-right across the top

conductive layer. We can convert directly from length L to resistance R, since for a

given screen, we will have a constant ρ (same material) and constant A. Based on the

formula, when the touchscreen is pressed at some point, we can divide the top layer

into 2 resistors, each of which is a portion of the whole. This is pictured in fig. 31.

ρLtouch
A

ρLrest
A

Ltouch Lrest

Figure 31: Resistive touchscreen with sub-

resistors explicitly shown.

We can actually also attach a voltage source to the two ends of the touchscreen

and measure the output voltage as the voltage dropped across Lrest (see fig. 32). Then,

by applying our voltage divider formula, we can develop a relationship between Vmid

and Ltouch! Starting with eq. (36), we substitute directly and make simplifications:

Vmid = VS
Rrest

Rrest + Rtouch

Vmid = VS

ρLrest
A

ρLrest
A + ρLtouch

A

Vmid = VS
Lrest

Lrest + Ltouch
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Vmid = VS
Lrest

Ltotal

Note some important results; the 1D touchscreen is very closely connected to

the resistive voltage divider; there’s no complexity that arises based on the material

geometry since all those factors cancel out. Again, only the ratio of resistances matters,

so the touchscreen can be as big or small as needed for a specific application; the

result still holds.
−+

VS

ρLtouch
A

ρLrest
A

− +Vmid

Ltouch Lrest

Figure 32: Resistive touchscreen with sub-

resistors explicitly shown, along with a voltage

source to create a potential difference.

Now, we address the purpose of the bottom black conductive layer; why is it

needed? Well, in practice, we will use it to measure Vmid by only collecting data from

the edge of the screen. If we only had one layer, then to measure Vmid, we would

need to probe the actual location where the finger contacts the screen! Of course, this

isn’t feasible. For a more thorough discussion on why adding the bottom conductive

layer to the model doesn’t affect our previous results, see the co urse notes. The

general intuition is that there is no physical connection between the bottom layer and

the circuit, so while it enables us to measure certain voltage drops, it doesn’t add

new paths for current to flow. −
+VS

R1

R2

Vmid

A

Figure 33: Notice the ammeter (boxed) con-

nected in series with R2.

Measurement Tools and Techniques: There are two main quantities we may want

to measure in a circuit; current and voltage. We have two tools to help us: the

ammeter and voltmeter. Given fig. 29, suppose we want to measure the current

through R2 and also the voltage across R2. We would connect an ammeter as in

fig. 33 and a voltmeter as in fig. 34.

−
+VS

R1

R2

Vmid

V

Figure 34: Notice the voltmeter connected in

parallel with R2.

Notice how the ammeter blends into the wire after R2, allowing it to measure

the current flowing through itself.82 A good ammeter must have almost no resis-

82 By applying KCL at the node between the
ammeter and R2, the current through R2
must be the same as that going through the
ammeter.

tance (resembling a short, or wire); otherwise, its presence will affect the circuit!

Measurement tools should remain as close to invisible as possible. If the very act of

measuring a quantity changes that quantity, the information we get isn’t very useful.

The voltmeter is attached in parallel with the resistor (they share the same

terminal nodes).83 In this case, our voltmeter will need to have a very high resistance

83 We form a small KVL loop involving R2
and the voltmeter to see that the voltage drop
across the resistor will be measured by the
voltmeter.

(so it resembles an open circuit); otherwise, it might "steal" some of the current going

through R2, and the circuit more broadly will be affected.

Power: Power refers to the rate of energy change: P = dE
dt and has units of watts

[W = J
s ]. A single element can generate (P < 0) or dissipate (P > 0) energy. We can

derive the formula for power in terms of quantities we can measure; current and
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voltage! We can apply some definitions: voltage is potential energy per unit charge,

so we can write V = dE
dQ =⇒ dE = VdQ. Differentiating both sides with respect to

time yields power on the left: dE
dt ≡ P = V dQ

dt . Fortunately, we know that dQ
dt = I, so

we find that in the steady-state (when current flow itself is constant over time):

P = IV (37)

Using Ohm’s law (eq. (31)) for resistors,84 we can write eq. (37) in the following 84 One important result to remember is that
by passive sign convention, resistors always
dissipate power because current enters the
+ terminal. Voltage sources tend to generate
power, since current comes out of the +
terminal (and the product P = IV < 0).

equivalent forms:

P = IV ≡ V2

R
≡ I2R (38)

Now, we address a point of common confusion related to terminology by

explicitly outlining the meaning of 4 commonly encountered phrases:

1. negative power dissipated =⇒ P < 0.

2. positive power dissipated =⇒ P > 0.

3. negative power generated =⇒ P > 0.

4. positive power generated =⇒ P < 0.

Problems

z Problem: Given fig. 35, how many nodes do we need to label to perform NVA
(including ground and VS)?

−
+VS

R1

R2

R4 R6

Ia

R5

−
+Vb R3

Figure 35: Circuit for the first problem!

Answer: 5

Quick Solution: This is very similar to a problem in the previous chapter; we
need to label all nodes in the given circuit to perform NVA, of which there are 5.
If we don’t label all nodes, we will not have enough information (equations) to
solve the circuit completely. See fig. 36 for the nodes!

−
+VS

R1

R2

R4 R6

Ia

R5

−
+Vb R3

Figure 36: And now with colored nodes!

z Problem: Given a resistive slab such as in fig. 19, by what factor does the resistance
change if all dimensions are doubled?

Answer: 1
2

Quick Solution: Suppose we have R0 = ρL
A = ρL

Wt . Then doubling all dimensions
L, W, t: R′ = ρ·2L

A′ = ρ·2L
2W·2t = 1

2
ρL
Wt = 1

2 R0. Therefore, our resistance falls by a
factor of 1

2 . Notice that even though the length increased, the cross-sectional area
depends on 2 of the dimensions each of which doubled, so the increase in area
has a greater impact on the resistance of the slab.
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z Problem: Given a cylindrical piece of metal with length l = 10cm and radius
1mm, you take a resistance measurement across the length, between the circular
ends, and find Rcyl = 0.54mΩ. What is ρmetal?

Answer: 1.7 · 10−8Ω m

Quick Solution: Starting from eq. (30), we rearrange to isolate ρ: R = ρL
A =⇒

ρ = RA
L . Now, we no longer have a rectangular prism-shaped slab; our cylinder has

a different cross-sectional area. Calculating (making sure our units are correct!):
A = πr2 = π

(
10−3m

)2
= 3.14 · 10−6m2. Plugging in the remaining two given

values:

ρ =

(
0.54 · 10−3Ω

)
·
(
3.14 · 10−6m2)

0.1m
= 1.69 · 10−8Ω m ≈ 1.7 · 10−8Ω m

z Problem: Given fig. 37, what is the voltage drop across R1? −
+VS R1

R2

Figure 37: Diagram for the problem to the left.

Answer: 0V

Quick Solution: Notice that R1 is in parallel with a wire (short); since no voltage
can be dropped across any ideal wires, and elements in parallel have the same
voltage drop, the drop across R1 must be zero.

Long Solution: There are at least 2 other ways to intuitively see the same result as
the quick solution. As we have done before, we can form a KVL loop including
R1 as the only non-wire circuit element, such that the voltage drop across R1 is
zero by applying eq. (33).

More intuitively, when current leaves the voltage source and reaches the
junction above R1, it has two possible exit branches; 1) the wire and 2) the resistor.
Current will always prefer the path of less resistance and here, the resistor has
infinitely more resistance compared to the wire! So none of the incoming current
will go through R1, and by Ohm’s law, if there is no current (IR1 = 0), then there
is no voltage drop (VR1 = 0). We reach the same result by applying the current
divider equation (eq. (34)): IR1 = IS

Rwire
Rwire+R1

= 0.

z Problem: Which of the resistors in fig. 38 have voltage drop VS across them?

a

−
+VS

b c d

R2

e

R4f

R
5

g

R 3

R1

Figure 38: Diagram for the problem to the left.

Answer: R1, R2, R3, R5 (all but R4)

Quick Solution: This question amounts to noticing which resistors can be part
of carefully chosen closed KVL loops where the only other circuit element is VS.
Using the node labeling, we list these loops:

R1 : a→ b→ c→ f → a

R2 : a→ b→ c→ d→ e→ g→ f → a

R3 : a→ b→ c→ d→ g→ f → a

R5 : a→ b→ c→ g→ f → a
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For R4, we cannot arrive at such a loop. We can show this by noting that the
two terminals of R4 are e and f . The only paths to reach e from the node above VS

are c→ g→ e, c→ d→ e, c→ f → g→ e, and c→ g→ d→ e. These all contain
at least 1 resistor and so no closed loop can be formed that contains solely R4 and
VS.

Long Solution: Full NVA for a circuit like this might be tedious, but will yield
the correct answer. The especially diligent student who takes this approach (or one
more experienced in inspecting circuits) will find the following node potentials
[V]:

a, f , g, e : 0

b, c, d : VS

The element currents are (using the given +,− terminals and node potentials
above):

R1(+ : c,− : f ) =⇒ IR1 =
VS
R1

A

R2(+ : d,− : e) =⇒ : IR2 =
VS
R2

A

R3(+ : d,− : g) =⇒ : IR3 =
VS
R3

A

R4(+ : e,− : f ) =⇒ : IR4 = 0A

R5(+ : c,− : g) =⇒ : IR5 =
VS
R5

A

Notice also that R4 is the only resistor with both terminals in the same "group" of
node potentials, so the difference in potential across both ends is zero, not VS as
for the others.

z Problem: Suppose we modify the circuit above to add R6 between g and f as
shown in fig. 39. Now, which of the resistors have voltage drop VS across them?

a

−
+VS

b c d

R2

e

R4f

R
5

g

R 3

R1

R 6

Figure 39: Diagram for the problem to the left.

Answer: Only R1

Quick Solution: Going through the exact same logic as before, we find that
the KVL loop for R1 remains the same, but all other resistor loops relied on the
g→ f connecting being a short in order to contain only the voltage source and a
single resistor. Adding R6 makes it so each of these others loops now contains an
additional resistor, so we cannot simply assert that those voltage drops are still
zero.

z Problem: Suppose you’re told a particular circuit element’s power is negative;
what does this say about the element if it is a resistor? What if it’s a voltage source?
How about if it’s a current source? The options in each case are: nonsensical (cannot
be true), power is generated, and power is dissipated.

Answer: Resistor: nonsensical, Voltage/Current Source: power generated
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Quick Solution: By definition of passive-sign convention, the power for a resistor
cannot be negative; that is, resistors always dissipate power as explained in the
relevant information section. However, current sources and voltage sources
are not passive elements and do not follow PSC. Here, since P < 0, the sources
are generating power.85 85 In reality, voltage/current sources are

actually quite complex elements in physical
systems, and they have to be to reliably
enforce certain features that a circuit designer
can depend on.

z Problem: Given fig. 40, what is the power consumption of R2?

−
+6V

4ΩR1

2ΩR2

Figure 40: Notice the topology of this circuit?

Answer: 2W dissipated

Quick Solution: Applying the voltage divider formula eq. (36), VR2 = 6 · 2
4+2 =

2V. For a resistor, out of the 3 equivalent forms in eq. (38), a convenient formula

to apply here is PR2 =
V2

R2
R2

= 4
2 = 2W. So 2 watts are dissipated by R2.

It might be simpler to note that using NVA (or visual inspection), the current
in the circuit (same everywhere) is I = 1A. So PR2 = I2

R2
R2 = 1A · 2Ω = 2W.

z Problem: For the same circuit as before, fig. 40, what is the power consumption of
VS = 6V?

Answer: 6W generated ≡ −6W dissipated

Quick Solution: After solving for the circuit current as I = 1A, as before, we
note that the voltage source consumes P = IV = 1A · (−6V) = −6W so it actually
generates 6W.86 86 Yet another solution to the previous problem

involves proportions, now that we’ve calcu-
lated PVS ; of the generated 6W, R2 dissipates
half as much as R1 and the total dissipa-
tion for the circuit must be 0W since energy
must be conserved over time. Therefore, R2
dissipates 1

3 (6W) = 2W.



Practice Set 7: Thevenin and Norton
Equivalence

Relevant Equations/Information

2D Touchscreen: For this part, I highly recommend the course notes; much of

the intuition from the 1D touchscreen carries over, and the extension into another

dimension requires solid visuals, which the course notes have, and would take me too

long to generate. Also, the practice sets don’t have any specific questions on the 2D

touchscreen; recall that the touchscreen is an interesting application of fundamental

concepts we’ve already covered!

+

−
vc

−
+

Avvc

Figure 41: Voltage Controlled Voltage Source

(VCVS) (unitless voltage gain Av)

+

−
vc Gvc

Figure 42: Voltage Controlled Current Source

(VCCS) (transconductor with transconduc-

tance G (units: Siemens, S, or 1
Ω )

ic −
+

Ric

Figure 43: Current Controlled Voltage Source

(CCVS) (transresistor with resistance R)

ic Aiic

Figure 44: Current Controlled Current Source

(CCCS) (unitless current gain Ai)

Dependent Sources: As briefly mentioned before, the voltage and current sources

covered so far have been independent sources, meaning they have a constant, fixed

value. However, dependent sources also generate currents and voltages but their output

depends on some other "controlling" current ic or voltage vc in the circuit. There are

4 varieties of dependent sources, as listed in figs. 41 to 44.

Superposition: When there are multiple independent sources in a circuit, such as

fig. 35 or fig. 23, we can simplify circuit analysis using the principle of superposition.

Simply stated, we can consider only one independent source at a time by "zeroing

out" all others and analyzing the circuit. We will arrive at some node potentials and

some element currents associated with that source (and that source alone). Then, we

repeat for the other sources. At the very end, the principle of superposition says that

we can simply add all the individual values to arrive at the overall circuit’s potentials

and currents!

What does it mean to "zero out" a source? For a voltage source, this means no

voltage is dropped, and observing table 1, we note this behavior is just like a wire. For

a current source, no current can flow through it, just like an open circuit. Therefore,

we can use wires or open circuits to zero out sources depending on whether they’re

supplying voltage or current!

To understand why superposition is even valid, we refer to our properties of
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linear algebra. Note that the NVA analysis procedure culminates in solving an

augmented matrix, such that each unknown node potential we solve for can be

expressed as a linear combination (the scalars come from the resistor values) of

the input variables (independent sources). This follows directly from eq. (8), left-

multiplying both sides by A−1 to isolate the vector of unknowns, ~x. This can be done

no matter how many independent sources we have. The principle of superposition

says that we can explicitly decompose a circuit into the contributions of each source

on each unknown and add them back again linearly at the end to get the result.

b
−
+Vth

Rth

a

Figure 45: General form of a Thevenin equiv-

alent circuit. Given a circuit and two output

terminals, we know the above gives a voltage-

source based equivalent; the work lies in

solving for Vth and Rth.

b

IN

a

RN

Figure 46: General form of a Norton equiva-

lent circuit, the current-source based equiva-

lent form for a given circuit. Here, we must

solve for IN and RN .

Equivalent Circuits: In many cases, a complex combination of independent sources

and resistors can be simplified into an equivalent circuit which has the same I-V

characteristics as the original but is easier to work with.87 So far, we have only seen

87 Note that the I-V characteristic is the only
feature preserved by an equivalent circuit;
extending the equivalence to a concept such as
power will lead to mistakes.

circuits and circuit elements that have linear I-V relationships, and these lines are

defined by their x- and y-intercepts. In context, these are:

−
+VS

R1

R2

a

b

Equivalent
Circuit

a

b

Figure 47: We can form an equivalent circuit

for the voltage divider when looking "into" it

from terminals a and b.

Velem

Ielem
IN

Vth

Figure 48: Sample I-V Relationship for a

mystery (linear) circuit; we’ll use this to

construct thevenin and norton equivalents!

1. Open-circuit voltage: voltage Vopen ≡ Vth when I = 0. Used for thevenin equiva-

lent, as in fig. 45.

2. Short-circuit current: current Isc ≡ IN when V = 0. Used for norton equivalent, as

in fig. 46.

Once we find these two special values for any circuit, we can create its I-V

relationship and use that to construct one of 2 kinds of equivalent circuits. Note that

an equivalent circuit exists between 2 terminals; see fig. 47. Suppose our circuit has

an I-V relationship as given in fig. 48, when looking between the 2 output terminals.

Let’s take a look at how to actually find the specific values:

Thevenin Equivalent Circuit: To find Vth, we recognize that it equals the difference in

node potentials at a and b, so performing NVA on the original circuit will yield Vth.

As for finding Rth, see below.

Norton Equivalent Circuit: To find IN , we short terminals a and b and measure the

resulting current. We describe how to solve for RN below.

Note that the thevenin and norton equivalents are not unique for a given circuit;

the same circuit can look quite different from different output terminals. For examples

deriving the thevenin and norton equivalent for various sample circuits, see the course

notes.

Procedure to find Req ≡ Rth ≡ Rn: There are 3 methods that can be used to solve
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for the equivalent resistance between 2 terminals, outlined below:

1. Apply Test Source: In order to solve for the effective resistance between the two

terminals, we first zero out all independent sources. Then, we can "feed in" a test

current It and measure the corresponding voltage drop across the terminals Vt, or

establish a voltage Vt and measure the resulting It. Either technique will work; see

fig. 49 and fig. 50. The ratio Vt
It

will yield Req. See course notes for applications

of this technique to simple circuits; we tackle more complex examples in the

problems. This Vt
It

technique always works, for any circuit, just like NVA!

Equivalent
Circuit

a

b

−
+ Vt

It

Figure 49: By applying a test voltage Vt across

a and b, we can measure the resulting current

draw of the equivalent circuit It and use that

to calculate Req.

Equivalent
Circuit

a

b

It

+

−

Vab ≡ vt

Figure 50: By feeding a test current Ix into

the equivalent circuit, we can measure the

resulting voltage drop Vab and calculate Req.

2. Resistor Network Simplifications: If the resistors between a and b resemble series

or parallel configurations, and there are no dependent sources in the circuit, the

techniques of the section below can be useful. Otherwise, we must resort to test

source applications and measurements.

3. Use Vth, IN : Suppose we have already derived the equivalent thevenin voltage and

norton current for a circuit; then the ratio of these, Vth
IN

gives Req directly! We are

effectively taking the slope of the I-V relationship, as in fig. 48. Note that this

technique will work only if there is ≥ 1 independent source in the circuit; otherwise,

we end up with only a point at the origin and cannot solve for Req.

Note an important consequence of the above; the equivalent resistance for both

the Thevenin and Norton variants is always the same! Intuitively, if the equivalent

circuits have the same I-V characteristics as the original circuit, and the slope of the

line gives 1
Req

, then the resistance must be the same for all equivalent circuits.

Deriving Parallel and Series Resistance Formulas: Many times, we will see

resistors connected together in a complicated way between 2 terminals of interest. But

oftentimes, these resistors can be simplified into a less complex network of equivalent

resistors based on certain rules. We consider two especially useful configurations:

Series and Parallel.88 88 The course notes derive the same informa-
tion in a more rigorous way with equivalent
circuits; I try to provide a more geometrical
intuition below.

Series Resistors: Resistors are said to be in series if by KCL, they have the same

current through them. Consider fig. 29 and fig. 37; resistors R1 and R2 are in series.

In fig. 23, R3 and R4 are in series. For any k resistors in series, we can replace them

with a single equivalent resistor:

Req = R1 + R2 + . . . + Rk (39)

The geometrical intuition for why the resistances add comes from the resistance

formula, eq. (30). Resistors in series are essentially components of one very long
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resistor! Adding many resistors in series always increases the equivalent resistance

because charges now have a greater length to move through.

b

R1

a

R2

R3

R5

R6

R7

R8 R9

R10

R4

b

R1 ‖ R2

a

R3 ‖ R4
R5

R6 + R7 + R8

R9

R10

b

R1 ‖ R2

a

(R3 ‖ R4) + R5

(R6 + R7 + R8) ‖ R10

R9

Figure 51: Sequence of resistor network

simplifications using eq. (39) and eq. (40).

Parallel Resistors: As mentioned briefly in previous chapters, resistors are in

parallel only if they share the same end nodes. Some examples include fig. 22, R3

and R4 in fig. 26, and (less obviously perhaps) R1, R2, R5, and R3 in fig. 38. Adding

more resistors in parallel always decreases the effective resistance, since the current

now has more paths through which to flow. That is, the effective area has increased,

and by eq. (30), an increase in area leads to a decrease in resistance.

The formula to simplify 2 parallel resistors is:

Req =
R1R2

R1 + R2
≡ R1 ‖ R2 (40)

We often use the second notation as a shorthand called the "parallel operator"

since parallel resistances come up quite often. It is worth noting that x ‖ y does

not mean that the elements x and y are in parallel for all circuit elements. Also, the

formula for 3 parallel resistors is not simply product
sum ; the best way to simplify many

parallel resistors is to combine in pairs using eq. (40).

See fig. 51 for an example simplifying a complex network! The terms were

getting a bit lengthy toward the end, so the single-resistor answer is below for anyone

who wants to check. Notably, the R1 ‖ R2 term is actually itself in parallel with the

left sub-network, from the perspective of a and b!

Req =

[
((R3 ‖ R4) + R5)︸ ︷︷ ︸+ ((R6 + R7 + R8) ‖ R10)︸ ︷︷ ︸+R9

]
︸ ︷︷ ︸ ‖ [R1 ‖ R2]︸ ︷︷ ︸

Problems

z Problem: Is it true or false that for fig. 52, Vab < VS for all positive (practical) R1

and R2?
−
+VS

R1

R2

a

b

+

−

Vab

Figure 52: Voltage Divider with both output
terminals labeled.

Answer: True

Quick Solution: The answer follows directly from the voltage divider equation,
eq. (36). Since the denominator is always larger than the numerator for all positive
resistances, the statement is true. The quantity Vout

Vin
= R2

R1+R2
is called the gain of

the circuit (and for the divider, the gain is always < 1).89

89 If one wanted to make the argument for an
infinite R2 (which is definitely impractical),
they’d still need to account for the fact that no
current can flow in this circuit so no voltage
can be dropped, since R2 resembles an open
circuit.

z Problem: Given fig. 53, find an expression for Req between a and b.

Answer: (R1 ‖ R2) ‖ (R3 + R5)
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Quick Solution: Combine R3 and R5 in series, R1 and R2 in parallel, and ignore
R4 since it’s shorted. Then combine R3 + R5 in parallel with R1 ‖ R2. See the
long solution for details and explanations!

a

R3

R5

b

R1

R4

R2

Figure 53: Resistor network to find the equiva-
lence for, between terminals a and b.

a

R3 + R5

b

R1 ‖ R2

Figure 54: Intermediate step to simplify the
resistor network in fig. 53.

Long Solution: Our approach to simplify resistor networks will be to apply series
and parallel simplifications where possible. First, note that R3 and R5 have the
same current through them, by KCL at the node between. So, they are in series,
and can be represented with an equivalent resistor R3 + R5. Also, R1 and R2 share
terminal nodes a and b, so they are in parallel. We combine them into a single
equivalent resistor R1 ‖ R2. Next, we notice that R4 has both ends connected to
the same node, so it is shorted. Whenever a resistor is shorted in this way, it can
be represented as an open circuit. Why? Well, a nonzero resistor has infinitely
more resistance than a short, so it may as well be an open circuit compared to the
other path, and we can basically forget about it. Our circuit now looks like fig. 54.

In this form, it becomes clear that R1 ‖ R2 and R3 + R5 are in parallel, and we
combine them using the parallel operator, arriving at (R1 ‖ R2) ‖ (R3 + R5).

−
+VS R

a

b

−
+VS

0Ω
a

b

Figure 55: The power consumption of the
thevenin equivalent is not the same as the
original circuit. Note that here, the equivalent
resistance of the circuit is 0Ω; the voltage
source, when zeroed out, acts like a short so
there’s a no-resistance path between a and b.

z Problem: Is it true or false that given a circuit with power consumption P, its
thevenin equivalent also has consumption P?

Answer: False

Quick Solution: Remember that the I-V characteristic looking between 2 ter-
minals is the only thing preserved by an equivalent circuit, and power is not
necessarily conserved. Consider the counterexample in fig. 55, where the original

circuit dissipates P =
V2

S
R but thevenin equivalent dissipates no power (here, for 2

reasons: the equivalent resistance is 0Ω and more importantly, the circuit is not a
closed loop so no current can flow).

−
+

12V

3Ω

6Ω

7Ω
a

b

Figure 56: Circuit to find Rth and Vth for given
terminals a and b.

z Problem: Given fig. 56, find Rth and Vth between a and b.

Answer: Rth = 9Ω, Vth = 8V

Long Solution: We follow the steps outlined earlier and find Vth and Rth directly.
To find Vth: note that NVA (or application of the voltage divider equation, eq. (36))
yields the potentials at the nodes above and below the 6Ω resistor: 8V above and
0V below. So Vth = Vtop −Vbottom = 8V. The 7Ω resistor is "dangling" from the
perspective of the circuit, and no current can flow through it because there is only
an open node a on the other end. If any current flowed through this resistor, charge
would be accumulating at a or being generated at a, and neither can happen. This
means there can be no voltage drop across that resistor, so Va ≡ Vtop.

To find Rth: we have to zero out the independent voltage source. The voltage
source becomes a wire. Then, the 3Ω and 6Ω share terminal nodes due to the
short, and they are in parallel. Using eq. (40) to simplify: Req = 3·6

3+6 = 2Ω. Now,
this equivalent resistance is in series with the 7Ω resistor by KCL. So we apply
eq. (39) and add them; Rth = 9Ω.
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There is another approach we can take to find Req: Vth
IN

. We already found
Vth above, and to find IN , we form a short-circuit between a and b and find
the resulting current.90 Performing NVA is one way to find this current and 90 Fair warning, the numbers are not so nice :(

will certainly work, but we can try something different; we simplify the resistor
network down to a single equivalent resistor to find the current draw out of the
voltage source. Then, we notice that a portion of this current goes into the 7Ω
branch and the remainder goes down into the 6Ω branch.

First, the equivalent resistance; if there is a short between a and b, then the
6Ω and 7Ω resistors will be in parallel (see fig. 57), and 6 ‖ 7 = 42

13 . Then, this
equivalent resistor is in series with the 3Ω resistor, so the total is 3 + 42

13 = 81
13 Ω.

Using this value and Ohm’s Law (eq. (31)), we find IS coming out of the 12V
source; IS = 12

81/13
= 12·13

81 = 156
81 A.

Now, we track this current through the original circuit; all of IS goes through
the 3Ω resistor, but splits at the node to its right. Applying the current divider
equation eq. (34), the current into the 7Ω resistor is I7Ω = IS

6
6+7 = 8

9 A. Calculating
Rth : Vth

IN
= 8

8/9
= 9Ω. The results match as they should!

3Ω 6Ω

7Ω
a

b

Figure 57: Network with voltage source
zeroed, which can be used to find equivalent
resistance between a and b.

−
+

10V

5Ω

20Ω

6Ω
a

b

2A

Figure 58: Circuit to find Rth and Vth for given
terminals a and b.

5Ω 20Ω

6Ω
a

b

Figure 59: Network with both independent
sources zeroed, which can be used to find
equivalent resistance between a and b.

z Problem: Given fig. 58, find Rth and Vth between a and b.

Answer: Rth = 10Ω, Vth = 16V

Long Solution: Note the similarity to the previous question, but there is now
an additional independent current source! Note that if we take the approach of
network simplifications to find Req, this won’t really affect our approach since we
will zero all independent sources anyways, and a zeroed current source is an open
circuit. However, when it comes to calculating Vth, the principle of superposition
will prove quite useful.

We first find the node potential contributions from the voltage source; this is
exactly as in the previous problem, so following the same steps, Vth, 10V = 8V.
Next, to find the contribution from the current source, we can perform NVA
rigorously, or apply the current divider equation and recognize that the potential
drop across either the 5Ω resistor or the 20Ω resistor gives Vth, 2A. The current
through the 20Ω branch is I20Ω = IS · 5

5+20 = 2 · 0.2 = 0.4A. Then the voltage
drop V20Ω = I20Ω · 20Ω = 8V. Adding the contributions from both sources:
Vth, total = 8 + 8 = 16V.

Now, to find Rth, if we want to use resistor network simplifications, then
following the exact same steps as the previous problem (see fig. 59), Rth = (5 ‖
20) + 6 = 4 + 6 = 10Ω.

As we’ve seen, we can also approach this task by finding IN , the short-circuit
current between a and b. Here, there are two sources to consider, so it makes
sense to use superposition, To find the current contribution from the voltage
source, we repeat the same steps as above, yielding: IN,10V = 0.8A. For the current
source, we can take a similar approach. First, zeroing out the voltage source leaves
a short-circuit in its place. The 2A current then divides between 5Ω, 6Ω, and
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20Ω and we want the current through the 6Ω branch. So we can combine the
5Ω and 20Ω resistors and applying the current divider equation eq. (34), find:
IN,2A = 2 · 5‖20

6+(5‖20) = 2 · 4
10 = 0.8A.

Adding the contributions: IN, total = 1.6A. So Rth : Vth
IN,total

= 16
1.6 = 10Ω. Once

again, our answers match! There are takeaways from these two problems; some
approaches tend to be much faster than others, and also less error-prone, but the
more kinds of circuits we see, the easier the process becomes.

z Problem: Is it true or false that combining (positive) resistors in parallel yields an
equivalent resistance that is less than any of the individual resistances?

Answer: True

Quick Solution: The result follows from rearranging eq. (40) into R1 ‖ R2 =

R2
1

1+ R2
R1

, such that all individual resistors will be larger than the equivalent resistor.

We can inductively apply this reasoning to any number of resistors.

Long Solution: To simplify many resistors in parallel, we apply eq. (40) repeat-
edly; that is, if we can show that R1 ‖ R2 < R1, R2, we will have shown that the
statement is true since we can apply the results inductively throughout all simpli-
fications. So: R1 ‖ R2 = R1R2

R1+R2
= R1

R1+R2
R2

= R1
1

1+ R1
R2

. Similarly: R1 ‖ R2 = R2
1

1+ R2
R1

.

Notice that in each case result of the parallel expression is to divide one of the
resistances by 1 + R2

R1
, which is always > 1 for positive resistances. We’ve shown

the statement holds for 2 resistors; applying the same logic pairwise for any k
resistors, the result still holds. This can be a very useful sanity check on exams!

Intuitively, consider that adding a resistor in parallel amounts to increasing the
cross-sectional area across which current can flow, thereby reducing the effective
resistance to movement of charge. −

+
10V

2Ω

5Ω 1A

b

a

Figure 60: Circuit to find Vab (and later, Rth)
for.

z Problem: Given fig. 60, what is Vab?

Answer: Vab ≈ 8.57V

Quick Solution: We can apply superposition. Considering only the voltage
source, with the current source zeroed out (open circuit), we have a simple voltage
divider; the potential at a is Va = 10 · 5

5+2 ≈ 7.143V. Considering only the current
source (voltage source becomes a short) and applying the current divider equation
(eq. (34)), Va = (1A · 2

2+5 ) · 5Ω ≈ 1.428V. In both cases, b is grounded. So adding
the contributions: Vab = 7.14 + 1.43 ≈ 8.57V.

2Ω 5Ω

a

b

Figure 61: This redrawn form makes it easier
to find the thevenin resistance!

z Problem: For the same circuit, fig. 60, what is Rth, with terminals a and b?

Answer: Rth = 10
7 Ω

Quick Solution: It can help to redraw the circuit as in fig. 61, with the indepen-
dent sources appropriately zeroed out. Now, it can be seen that the 2Ω and 5Ω
resistors are in parallel: Rth = (2 ‖ 5)Ω = 10

7 Ω.



Practice Set 8: Capacitors

Relevant Equations/Information

Capacitor Structure and Physics: A typical capacitor is a structure composed of

two parallel metal plates, and therefore has a circuit symbol as given in fig. 62. 91 91 It is worth noting that there is capacitance
everywhere because everything is a conductor
(to some extent). There is capacitance between
your fingers and your laptop keys, your
fingers and our phone, and (to a much lesser
extent) you and Pluto!

C

Figure 62: The circuit symbol for a capacitor.

Note that the two horizontal lines represent

the capacitor’s metal plates.

We can draw some analogous connections between resistors and capacitors.

For our purposes, capacitors do not have polarity; their orientation doesn’t impact

their behavior. A capacitor has capacitance, and the units of capacitance are Farads,

(F = C
V ). Capacitance depends on the physical geometry of a capacitor. Observe

fig. 63; given such a pair of metal plates with a certain area A and separation

between then d, the capacitance is given by eq. (41), where ε is a constant with value

8.854 ∗ 10−12 F
m , the permittivity of free space.

C = ε
A
d

(41)

A

+ + + + + ++ +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

− − − − − −−

− − − − − − −

−

−

−

d

V+

V−

Figure 63: A physical diagram of a capacitor,

with 2 metal plates and an insulator (called a

dielectric, commonly just air) between them.

The function of a parallel plate capacitor is to store charge on its plates. The

amount of charge Q on a capacitor (magnitude of charge on each plate) is related to

its geometrical structure (capacitance C) and the voltage applied to it V, as indicated

by eq. (42).

Q = CV (42)

Let’s examine these equations intuitively; when we apply a voltage across the

conductive plates, we create a potential difference, and so charges will build up on

the plates as shown in fig. 63.92 But they will not build up indefinitely because this

92 These charges must be equal in magnitude
and opposite in sign by the principles of
conservation of charge. We had a neutral
system before applying the voltage, so the
system overall must be neutral afterward also.

potential difference is not infinitely strong. At some point, an additional positive

charge will be ambivalent about joining the plate; while there is a potential difference

V+ −V− between the plates attracting the charge, there are also repulsive forces from

the charges that already exist on the plate. After this amount of critical charge forms

on the plate, no additional charge will enter.

The more the area, the more the total charge that can fit on the plate because

the individual charges can spread out more, decreasing the repulsive forces. But

the smaller the distance between the plates, the more strongly the + and − charges



88

attract each other (recall electrostatic forces)! That is, for the same voltage, decreasing

the distance of plate separation increases the charge that will build up on the plate.

This intuition matches the equations! The best capacitors will maximize A and

minimize d.93 93 If d is too small, we may begin to see non-
ideal effects but don’t worry about that in this
class.Capacitor Energy Storage: When we apply a potential difference, charges build

up on the plates; these charges are the reason that a capacitor stores energy. The

repulsion between charges on a given plate means that moving a charge onto the

plate takes energy (supplied by the voltage source). The more charge already on a

plate, the more energy it takes to push another charge on. When we derived the

formula for power, we used the fact that voltage is potential energy per unit charge:

V = dE
dQ . We use the same starting point and rearrange, substitute, and integrate94: 94 The separation of variables technique is not

necessary to understand for this class.

V =
dE
dQ

dE = VdQ

dE = V · d(CV)∫ E

0
dE = C

∫ V

0
V · dV

The result is:

E =
1
2

CV2 (43)

This formula gives the energy of a capacitor when it is fully charged, holding

the complete Q determined by C and V.

Capacitor I-V Relationship and Behavior:

From eq. (42), we can derive the I-V relationship for a capacitor by differentiating

both sides with respect to time, and we arrive at eq. (44).

I = C
dV
dt

(44)

There is a very important consequence to this equation; current only flows

through a capacitor when the voltage across it is actively changing. If the voltage

across it is constant, then the plates are already full of charge for that voltage; any

additional charge will feel the repulsive forces of the existing charges and will not

want to enter the plate.

We haven’t yet explained how current physically flows in a circuit with a

capacitor. It was simpler with a resistor, because charges could move through the
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resistor. But here, there is a physical gap between the plates, so charges can’t move

across. What happens? Note that the negative charges build up on the bottom plate

in fig. 63; this happens because the positive charges on the top plate push the positive

charges away from the bottom plate. This means that in reality, the charges entering

the top plate are not the same exact physical charges that exit the bottom plate, but

it doesn’t matter! From the perspective of the other circuit elements (and for our

purposes), current flows just the same.

−
+

VS C

Figure 64: A capacitor will fully charge up to

Q = CVS almost immediately if connected

to a voltage source! Current will flow until a

potential difference of VS is established across

the plates of the capacitor, by the charges.

IS C

Figure 65: A capacitor will continue to charge

up more and more over time if connected to a

constant current source!

Let’s look at a couple examples; suppose we have a capacitor sitting there, as

in fig. 62, and we connect it to a voltage source, as in fig. 64. The capacitor will

become fully charged nearly instantaneously because we assume that there is no

limit to the current that can flow in a circuit.95 Charge will flow very quickly onto

95 For anyone who’s studied RC circuits or
similar (not required), a resistor will act as
a current-limiter, and sets the charging time
constant of the filter.

the plates (current flows because the voltage changes from 0 to VS) until a potential

difference of VS is formed across the plates. After charge Q = CVS is on each plate,

no additional charges will enter the plates.

What happens if we instead connect an ideal constant current source to a

capacitor, as in fig. 65?96 The current source will force current to flow in the circuit,

96 You’d explode your capacitor if you did this.

and therefore, the voltage drop across the capacitor will increase linearly with time.

Why linearly? We can manipulate eq. (44) as follows:97

97 Here, V(0) is the initial voltage across
the capacitor, before the current source is
connected. This term arises from the fact
that integration introduces a constant of
integration, which is V(0) here. This will
often, but not always, simply be 0V.

I = C
dV
dt∫ t

0
I · dt = C

∫ V

0
dV

It = C(V(t)−V(0))

V(t) =
I
C

t + V(0)

Notice that the slope of voltage with respect to time is linear, with slope I
C . This

makes intuitive sense; if the current source is forcing more current (more charge)

onto the plates, then the voltage across the plates will increase more quickly. But if

the capacitance is larger, then the capacitor can hold more charge so the voltage drop

won’t increase as quickly.

Capacitor Network Simplifications: Just as with resistors, we can make capacitor

network simplifications for parallel and series connections,98 but there are some 98 These terms are defined the same as they
were for resistors; parallel capacitors share
terminal nodes, series capacitors have the
same current through them by KCL.

important differences. We present geometrical intuition below; the course notes

derive the same results using test "changes-in-voltages" and currents.

https://en.wikipedia.org/wiki/Constant_of_integration
https://en.wikipedia.org/wiki/Constant_of_integration
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Series Capacitors: Observe fig. 66; the equivalent capacitor effectively has a larger

separation distance between the top-most plate of C1 and the bottom-most plate

of C2; the result is that the equivalent capacitance is smaller than either individual

capacitance, just like for parallel resistors. The middle two plates actually carry equal

and opposite amounts of charge, so their net contribution to charge storage is 0; the

presence of more plates doesn’t allow for more charge storage, and the only result is

to increase the effective d. After performing NVA, we find a formula similar to that

for parallel resistors:

Ceq =
C1C2

C1 + C2
≡ C1 ‖ C2 (45)

We could also arrive at eq. (45) by noting that from fig. 67, combining the

capacitors effectively makes the distance dC1 + dC2 , such that Ceq = ε A
dC1

+dC2
=⇒

1
Ceq

= 1
ε A

dC1
+dC2

=
dC1

+dC2
εA = 1

εA
dC1

+ 1
εA

dC12

=⇒ 1
Ceq

= 1
εA

dC1

+ 1
εA

dC12

. We rearrange and

arrive at eq. (45).
C2

C1

Figure 66: Capacitors in series.

C2 C2

Figure 67: Capacitors in parallel.

Now, we must address a point of common confusion; the parallel operator (‖)

is just a mathematical tool; it happened to describe the equivalence for resistors in

parallel but the operator actually applies to capacitors in series. As with resistors in

parallel, capacitors in series are best simplified pairwise.

Parallel Capacitors: Geometrically, capacitors in parallel have a larger effective

area (visually, we see this in fig. 67), because we can think of their areas as being

combined from the perspective of charge that builds on the plates. This means that

combining parallel capacitors is the same as adding them:

Ceq = C1 + C2 + . . . Ck (46)

This is easier to derive; since the area term is in the numerator, we have Ceq =

ε
AC1

+AC2+...+ACk
d = ε

AC1
d + ε

AC2
d + . . . ε

ACk
d = C1 + C2 + . . . + Ck.

Problems

z Problem: Given a parallel plate capacitor, to maximize its capacitance, do you
want to increase or decrease plate area A? Plate separation distance d? Insulator
permittivity ε?

Answer: Increase: ε, A, Decrease: d

Quick Solution: The answer follows directly from eq. (41). Area and permittivity
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are in the numerator of the capacitance formula, and separation distance is in the
denominator.

z Problem: Is it true or false that combining (positive) capacitors in series yields an
equivalent capacitance that is less than any of the individual capacitances?

Answer: True

Quick Solution: Just as we did for resistors in the previous chapter, we can
manipulate eq. (45): Ceq = C1C2

C1+C2
≡ C1

1
1+ C1

C2

≡ C2
1

1+ C2
C1

. Notice that we divide

each individual capacitance by a value larger than 1, so the net capacitance
decreases for series networks.

z Problem: Is it true or false that combining (positive) capacitors in parallel yields
an equivalent capacitance that is less than any of the individual capacitances?

Answer: False

Quick Solution: Inspecting eq. (46) we see that capacitors in parallel add (the area
term is in the numerator, opposite of a resistor). Therefore, adding capacitors in
parallel increases effective capacitance; for the same voltage, combining capacitors
allows for greater charge storage as compared to any one capacitor.

z Problem: Is it true or false that if we know I(t) for a capacitor, we can find V(t)
for any t?

Answer: False

Quick Solution: While we can theoretically perform the integration of current
over time for any arbitrary current function and solve for the change in voltage,
we would still need the initial condition in order to precisely find V(t). Without
V(0), we can only find ∆V = V(t)−V(0), not the value of V(t) itself. IS

C1

C2

C3

C4

+

−

Vout

Figure 68: Diagram for the problem to the left.

IS

u0
C1

IC1

C2

IC2

u1

C3

IC3

u2

C4

IC4

+

−

Vout

Figure 69: Labeled diagram to prepare for
solving the problem.

z Problem: Given fig. 68, what is Vout(t) in terms of the given circuit element values?
Assume that for all capacitors, VCi (0) = 0 (initially uncharged).

Answer: C3 IS
C2C3+C2C4+C3C4

t

Long Solution: There are two main approaches we can take to solve this question:
NVA (applications of KCL) and Capacitor Network Equivalences. Both of them
require some labeling of the given circuit, as in fig. 69, and a good amount of
algebra. It’s good practice! I present both approaches below:

KCL: We start by writing the following KCL equations:

u0 : IS = IC1

u1 : IC1 = IC2 + IC3

u2 : IC3 = IC4
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Recalling eq. (44) as the current through a capacitor, we substitute:

u0 : IS = C1
d(u0 − u1)

dt

u1 : C1
d(u0 − u1)

dt
= C2

d(u1 − 0)
dt

+ C3
d(u1 − u2)

dt

u2 : C3
d(u1 − u2)

dt
= C4

d(u2 − 0)
dt

Notice that we can plug the result of the first equation directly into the second
and get IS = C2

d(u1−0)
dt + C3

d(u1−u2)
dt ; the presence of C1 (and its value) doesn’t at

all impact the current entering C2, C3, or C4. The goal is to find Vout, but we must
first find dVout

dt ≡
d
dt u2, which we can then integrate over time. Fortunately, we

have this derivative in our third equation; let’s isolate and solve:

C3
d(u1 − u2)

dt
= C4

d(u2 − 0)
dt

C3
du1

dt
= C3

du2

dt
+ C4

du2

dt
du2

dt
=

C3

C3 + C4

du1

dt

Now, we plug into the second equation to get rid of the dependency on du2
dt :99 99 If you’re wondering why we don’t simply

solve the second equation for du1
dt in terms of

du2
dt and plug back in, it’s because the presence

of the IS terms makes the equation affine
and the algebra becomes much harder than
anticipated; it’s better to do it this way!

IS = C2
d(u1 − 0)

dt
+ C3

d(u1 − u2)

dt

IS = C2
du1

dt
+ C3

du1

dt
− C3

du2

dt

IS = C2
du1

dt
+ C3

du1

dt
− C3

(
C3

C3 + C4

du1

dt

)
Solving for our only unknown, du1

dt :100 100 Steps for completeness:

IS = (C2 + C3)
du1

dt
−

C2
3

C3 + C4

du1

dt

IS =
du1

dt

(
(C2 + C3)−

C2
3

C3 + C4

)

du1

dt
= IS

(
C2(C3 + C4) + C3(C3 + C4)− C2

3
C3 + C4

)−1

du1

dt
=

IS(C3 + C4)

C2(C3 + C4) + C3(C3 + C4)− C2
3

du1

dt
= IS

C3 + C4

C2C3 + C2C4 + C3C4

du1

dt
= IS

C3 + C4

C2C3 + C2C4 + C3C4

Now we go back to our relationship between du2
dt and du1

dt ; plugging in:
dVout

dt
≡ du2

dt
= IS

C3

C2C3 + C2C4 + C3C4
Integrating both sides with respect to t by separating variables (and noting the
initial uncharged condition) yields:101

101 Steps for completeness:

dVout = IS
C3

C2C3 + C2C4 + C3C4
dt∫ Vout

0
dVout = IS

C3

C2C3 + C2C4 + C3C4

∫ t

0
dt

Vout = IS
C3

C2C3 + C2C4 + C3C4
t + Vout(0)︸ ︷︷ ︸

0

Vout(t) =
C3 ISt

C2C3 + C2C4 + C3C4

Capacitor Equivalences: We can also find u1 directly using equivalent capaci-
tances. Combining C2, C3 and C4 into an equivalent capacitor Ceq yields C1 in
series with Ceq and u1 in between. Both have current IS flowing through them.
If we can solve for u1, then we can apply the capacitive voltage divider formula
(derived below) to find Vout.

Let’s proceed by using eq. (44) to find du1
dt . First, finding Ceq:

Ceq = (C3 ‖ C4) + C2

=
C3C4

C3 + C4
+ C2
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=
C2(C3 + C4) + C3C4

C3 + C4

Now, we solve for du1
dt :

IS = Ceq
du1

dt
du1

dt
= IS

C3 + C4

C2(C3 + C4) + C3C4

The only question now is, how does du1
dt relate to du2

dt ≡
dVout

dt ? It’s time to derive
the capacitor-based voltage divider equation.

dVS
dt

C1

C2

+

−

dVout
dt

Figure 70: Capacitor-based voltage divider.Given the circuit in fig. 70, what is dVout
dt in terms of dVS

dt ? Once we solve this, we
can directly apply the results to our original problem. Applying KCL and eq. (44),
IC1 = IC2 =⇒ C1

d(VS−Vout)
dt = C2

dVout
dt =⇒ dVout

dt = C1
C1+C2

dVS
dt . Substituting

appropriately into our problem:
dVout

dt
=

C3

C3 + C4

(
IS

C3 + C4

C2(C3 + C4) + C3C4

)
dVout

dt
= IS

C3

C2(C3 + C4) + C3C4

To conclude the problem, we integrate using separation of variables, noting the
initial uncharged state of C4 (that is, VC4 ≡ Vout = 0):

Vout(t) =
C3 ISt

C2C3 + C2C4 + C3C4

Note an important overall result; since we only care about changes in voltage,
we can ignore C1 since the current source sets the current division at u1.

z Problem: Given fig. 71, find Ceq between terminals a and b.

b

2C

2C

a

C

C

C

Figure 71: Capacitor network to find equiva-
lence for, between terminals a and b.

b

C 2C

a

Figure 72: Intermediate step to simplify the
network in fig. 71.

Answer: 3C

Quick Solution: This problem is similar to the one based off fig. 57; we apply
similar techniques, but for capacitors. We first notice that the 2C capacitors are in
series, and so can be simplified with eq. (45): 2C ‖ 2C = C. Also, the middle-top
capacitor is shorted out by the wire on the top-right, so it is effectively an open
circuit. Finally, the remaining C capacitors are in parallel since they share terminal
nodes; C + C = 2C. After plugging in this first round of simplifications, we
have fig. 72. We simplify the last parallel capacitors by adding them, ignore the
short-circuited capacitor, and arrive at 2C + C = 3C.

z Problem: Given fig. 73, what is the total energy stored in all the capacitors?

−
+

VS

C2

C2C1

Figure 73: Circuit to find capacitor energy
storage for for.

Answer:
(

C1
2 + C2

4

)
V2

S

Quick Solution: Using eq. (43), we can take one of two approaches; find the
voltage drop across each capacitor individually and add the individual energy
storages, or simplify the network to an equivalent capacitor and apply the equation
once.
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Individual Energy Storages: By symmetry in the capacitor voltage divider (dis-
cussed in more detail in a previous problem), each C2 capacitor has a VS

2 voltage

drop across it, so each stores energy EC2 = 1
2 C2

(
VS
2

)2
. Applying KVL with VS and

C1, this C1 capacitor has a full VS voltage drop across it, so it stores EC1 = 1
2 C1V2

S .

Adding them all up: Etot = 2EC2 + EC1 =
C2V2

S
4 +

C1V2
S

2 =
(

C1
2 + C2

4

)
V2

S .

Equivalent Capacitor’s Energy Storage: By applying series and parallel simplifica-
tions, we find that from the perspective of the voltage source, the equivalent load
capacitance is (C2 ‖ C2) + C1 = C1 +

C2
2 . This equivalent capacitor has the full VS

dropped across it; Etot =
1
2

(
C1 +

C2
2

)
V2

S =
(

C1
2 + C2

4

)
V2

S .



Practice Set 9: Op-Amps and Golden
Rules

Relevant Equations/Information

Capacitive Touchscreen, Charge Sharing, Switches, Measuring Capacitance:

Just as with the 2D Resistive Touchscreen, the notes are a good resource to learn

these concepts. They aren’t covered in the practice sets, but are still important!

Op-Amp Basic Model and Purpose: Op-Amp stands for operational amplifier, and

it amplifies a small input voltage signal into a much larger output voltage. The circuit

symbol for an op-amp is shown in fig. 74; the output, Vout, is an amplified version

of the difference between the inputs, V+ and V−.102 This difference is often referred 102 I will sometimes refer to V− as the inverting
input, and V+ as the non-inverting input. This
is standard terminology, and I will use these
interchangeably with V− and V+.

to as the signal voltage, and the amplification factor is a unit-less quantity A, also

referred to as the signal gain.

−

+V+

V−
Vout

VDD

VSS

Figure 74: Symbol of an op-amp (operational

amplifier). VDD represents the maximum

voltage that this op-amp can output and VSS

represents the minimum; if not specified, it is

often implicit that there is no such limit.

The most general form of the output voltage of an op-amp is:

Vout, ideal =
VDD + VSS

2︸ ︷︷ ︸
rail-determined offset

+ A (V+ −V−)︸ ︷︷ ︸
signal gain

(47)
+

−

V+

V−
−
+ VDD+VSS

2

−
+

A(V+ −V−)

+

−

Vout

Figure 75: Simplified internal model for an

op-amp. Note that there are two primary

determinants of the output voltage; the rails

(which become averaged) and the difference in

the input voltages (which become amplified).

Be sure to see eq. (47) and recognize how the 2

terms connect to this diagram.

In many cases, the VDD high rail and VSS low rail have the same magnitude (and

opposite sign), so the bottom VCVS representing the rail-offset (see fig. 75) is simply

0V. In this case, when the input voltages are the same (V+ −V− = 0), the output lies

exactly at 0V.

An op-amp can only output a voltage in the range [VSS, VDD]; if the ideal output

signal lies outside of this range, the actual output will be "clipped" to lie in the given

constrained range (as in the second and third cases below). Simply put, the actual

output voltage is a piecewise-linear function of the ideal output voltage (eq. (47)) and

the rails (use fig. 76 as a visual aid):

if Vout, ideal < VSS : Vout, actual = VSS [railing]

if VSS ≤ Vout, ideal ≤ VDD : Vout, actual = Vout, ideal

if Vout, ideal > VDD : Vout, actual = VDD [railing]
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Op-Amp as a Comparator: An op-amp can also be used to compare two input

voltages, and the sign of the output will indicate which input voltage is larger.

Suppose we have some known reference voltage Vref as V− (that is, at the inverting

input) and some other voltage V? as V+ (at the non-inverting input). We often want

to know whether V? is smaller or larger than Vref.

The gain A of an op-amp is quite high (on the order of 106 or more), and in

this class, we often treat it as infinite. This means that the "linear" region where the

output is an un-clipped, factor-of-A amplified version of the input actually doesn’t

exist, or is very narrow. If the two input voltages are exactly equal, then the output is

0V but otherwise, the output immediately rails to VDD (if V? > Vref) or rails to VSS

(if V? < Vref). Then, by observing the output, we can determine if V? is bigger or

smaller than our reference voltage Vref. A simple graph demonstrating this behavior

is in fig. 76.

(V? −Vref)

Vout

VSS

VDD

clipping

(0, 0.5)

Figure 76: The blue region is the (super nar-

row, and in the ideal case, perfectly vertical)

linear region where the input actually has

"space" to be amplified without clipping, but

note that for the vast majority of realistic

inputs, the outputs sits at one of the rails

(here, VSS ≈ −2V and VDD ≈ 3V). In this

way, the sign of the output directly gives

the relationship between V? and Vref. Note

that with zero input difference, the output

voltage (y-intercept) sits at the rail-offset,

(0, VDD+VSS
2 ) = (0, 0.5).

In practice, op-amps are highly complex internally because they need to work

correctly in a variety situations, but the act of comparing two voltages is very simple.

In situations when using an op-amp is overkill, we can instead use a dedicated

comparator (circuit symbol in fig. 77), which also follows the behavior in fig. 76 (but

with a perfectly vertical blue line, since it’s ideal).

−

+V+

V−
Vout

VDD

VSS

Figure 77: Circuit symbol for a comparator

(note the similarity to the symbol for an

op-amp).

Negative Feedback (NFB):103 At this point, one might be wondering how an op-

103 This section tends to cause great conceptual
confusion, and might be worth reviewing a
couple times to fully understand.

amp can do anything except output a voltage at one of the rails. Isn’t the internal gain

so high that no matter what, any nonzero input voltage difference will be amplified

to the point of clipping? Well, we can avoid this undesirable outcome using the

concept of negative feedback.

Negative feedback refers to the idea that there is some output amount that is the

ideal or intended amount; if the actual amount becomes larger than this reference,

then the system must detect this deviation and bring it down to the reference.

Similarly, if the actual amount drops too low, the system must bring it back up to the

reference. For op-amps, negative feedback helps maintain the output voltage at a

constant level despite the fact that the op-amp wants to rail the output. But how can

the op-amp detect the deviation in the first place?

To incorporate negative feedback into our op-amp design, we must create a

connection that goes from the output into the negative input, as shown in fig. 78. Let’s
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understand why this works; first, we assume the supplies are of equal magnitude,

so the output lies at 0V when V+ = V−. Then, from the general op-amp behavior in

eq. (47), we can say that Vout = A(V+ −V−). But here, V− = Vout! So what happens

when we solve for Vout?

Vout = A(V+ −V−)

Vout = A(Vin −Vout)

Vout + A ·Vout = A ·Vin

Vout(1 + A) = A ·Vin

Vout = Vin
A

A + 1

Interestingly, the output is a scaled version of the input. But remember how we

said that in the ideal case, A→ ∞? If that’s true, then the last equation above means

Vout = Vin. The output is the same as the input!104 So clearly, the system has the 104 Note that even if A isn’t infinite, so long as
it is very large, Vout ≈ Vin. If you’re confused
by the fact that there is somehow no input
voltage difference but a nonzero voltage at
the output, I recommend checking out the
practical example a couple sections below.

ability to output a voltage that is between the rails (when Vin lies in [VSS, VDD]).

−

+Vin

Vout

Figure 78: This example shows an op-amp

wired in negative feedback. It is critical that

the output is connected to the negative input,

not the positive one. This configuration is

also called a unity-gain buffer, and is used to

isolate circuit blocks/stages, which will be

covered later.

Checking for NFB: In fig. 78, we can see that the output is connected to the negative

input terminal, but how can we confirm that the op-amp is in negative feedback?

One convenient method is to check what happens if the output voltage happens

to fluctuate by a little bit above the desired output; when this change occurs and

propagates back to the input of the op-amp, does it cause the output to come back

down to the desired level? If so, the system is in negative feedback.

For the buffer in fig. 78, if Vout ↑, then V− ↑, and V+ − V− ↓ (the difference

between the higher and lower voltages decreases if the lower voltage increases.)

Then, A(V+ − V−) ↓ also. From this, we can directly say that Vout ↓. Notice how

an increase in the output voltage ultimately led to a decrease in the output voltage.

This is negative feedback at work, squashing any fluctuations to ensure the output

remains at the expected level.105

105 It works the other direction too: if Vout ↓,
then V− ↓, V+ − V− ↑, A(V+ − V−) ↑ and
finally, Vout ↑.

The Buffer; A Practical NFB Example: When we present the fact that A = ∞

and V+ − V− = 0 in NFB, this seems to be wholly incompatible with the general

op-amp equation in eq. (47) that Vout = A(V+ −V−). Plugging in, we literally get

∞ · 0, which is undefined, so what’s wrong? Indeed, the thing to keep in mind is that

A is never truly infinite; this happens to be a convenient approximation, but for the

mathematically inclined, let’s use some actual numbers to convince ourselves that
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the concept and results derived using NFB aren’t complete nonsense.

For the simplest analysis, we use fig. 78. Suppose A = 1, 000, 000 = 106, which

is high but perfectly common. If Vin = V+ = 5V, then V−, same as Vout here, must

be a precise value such that 106(5− Vout) = Vout. Solving, Vout isn’t quite 5V; it’s

4.999995V. See, the fact is, the resulting differential of about 5µV is enough for the

op-amp to work with; it amplifies this difference into about 4.999995V at the output.

In practical scenarios, this output is plenty close enough to Vin = 5V, which is why

we feel comfortable saying V+ = V− in NFB. If you encounter any equations of the

form ∞ · 0 or similar and begin doubting your conceptual understanding, remind

yourself of this practical example.

Op-Amp "Golden Rules": These are two very useful results to be familiar with, as

they greatly simplify the analysis of op-amp configurations.

−

+I+

I−
Vout

Figure 79: An op-amp with the currents

feeding into the input terminals labeled. These

currents will always be zero! There’s no closed

circuit inside the op-amp at the input, so the

current cannot flow anywhere.

Golden Rule #1, Zero Input Currents: Observe fig. 79; I+ = I− = 0. That is, the

currents going into the inputs of an op-amp are always zero. Note that in fig. 75,

there is no closed circuit connection for current to flow into or out of the op-amp

inputs. This rule will always hold for op-amps unless specifically otherwise stated.106 106 This assumption is quite good for modern
op-amps which have very high resistance
looking into the inputs, and you likely won’t
encounter changes to this rule unless you take
a class like EE105.

Golden Rule #2, Equal Input Voltages (in NFB): For an op-amp in NFB, V+ = V−.

This rule is quite tricky to understand conceptually, because it seems at first to imply

that op-amps in negative feedback always have exactly 0V at the output. Isn’t that

what it means for the two input voltages to be equal? But remember that in negative

feedback, one of the "inputs" is actually some portion of the output! So this rule

suggests that the behavior of an op-amp in NFB isn’t as simple as it was with the

comparator. We had derived that Vout = Vin
A

A+1 , but note that we can generalize

this result for any situation where a portion of the output is sampled and fed into

the inverting input. For the unity-gain buffer, this portion was 1 because the output

voltage was perfectly (fully) mirrored to the negative input.107 But if it’s some more 107 For something like the non-inverting
amplifier as we’ll see below, this fraction is
less than one because of the voltage divider
from Vout to V−.

general fraction f (for feedback factor), then V− = f ·Vout. The relationship between

input and output voltage becomes Vout = Vin
A

A f+1 (≈ 1
f for large or infinite A). We

then apply the previous equation and conclude that V− = f · 1
f Vin, which is the same

as saying V− = V+ in NFB since Vin = V+.

Important Op-Amp Examples: Equipped with knowledge about feedback and

op-amp behavior, we can now take a look at 2 very common op-amp configurations
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to understand them better. In analyzing circuits, we cannot forget the basics; KCL

and NVA still prove very useful in formulating equations with which the circuit can

be solved.

Non-inverting Op-Amp: This configuration is shown in fig. 80. The goal is to

understand its behavior; specifically, we want to know how Vout compares to Vin

after being amplified.

−

+I+

I−

R1

R2

u1

−

+
Vin

+

−
Vout

Figure 80: A non-inverting op-amp. Note

that the input voltage with the squiggly

refers to a signal voltage, which is still an

independent source but typically of much

smaller magnitude (hence the usage of this

op-amp to amplify it!)

We must first check whether the golden rules can be applied; #1 certainly can

since we have an op-amp, but before using #2, we must check NFB. If Vout increases

a bit, then the node potential at u1 increases a bit. To see this, we can recognize that

R1 and R2 form a voltage divider between Vout and ground, so applying the voltage

divider equation,108 eq. (36), u1 = Vout
R2

R1+R2
. Here, if Vout increases, so too does u1.

108 NVA will yield the exact same result; just be
sure to note that the current coming out of an
op-amp might not be zero; it’s only the input
currents that are always zero.

We then notice that V− = u1 and so if Vout ↑, then V− ↑ and A(V+ −V−) ↓ so Vout ↓.

The system can correct itself! We’ve verified NFB.

To solve our system, since the op-amp is in NFB, we can apply Golden Rule #2:

V− = V+ =⇒ u1 = Vin.109 This might be an unexpected result! This configuration 109 If you’re tempted to plug in this result to
the general op-amp equation, A(Vin − u1), it’s
an understandable impulse, but this will only
lead you to conclude that Vout = ∞ · 0, which
is undefined and incorrect. One of the hardest
things to learn in this unit is to learn how
to work towards an expression of the form
Vout
Vin

; this results in a proper expression for the
circuit’s gain.

enforces that the node potential at u1 is equal to the input signal voltage!

From here, we apply the voltage divider equation again and perform some

algebra:

u1 = Vout
R2

R2 + R1

Vin = Vout
R2

R2 + R1

Vout = Vin
R2 + R1

R2

We conclude that, for a non-inverting op-amp:

Vout = Vin

(
1 +

R1

R2

)
(48)

So based on the specific resistor values used, the non-inverting op-amp allows us

to apply a gain to our input signal voltage! For example, if R1 = 2MΩ and R2 = 1kΩ

then the gain is 1 + 2·106

103 = 2001 ≈ 2000. That’s pretty good!

Inverting Op-Amp: The previous example showed us how to apply a positive

gain, but sometimes we want to turn a negative input signal into a positive output

voltage, or vice versa; to do so, we use a configuration as shown in fig. 81. Let’s

analyze this circuit and solve for its gain, Vout
Vin

.

−

+

R f I f

−

+
Vin

Rin Iin

+

−
Vout

Figure 81: An inverting op-amp. Note that

here, there is a so-called "flying" resistor that

connects the negative input to the output,

creating the NFB connection.
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We can begin with a KCL equation at the V− node. Since we know that op-amps

do not allow current into the inputs, I− = 0A. This also means that Iin = I f . We

can try applying Golden Rule #2, but let’s confirm NFB first as we’ve done before;

if Vout ↑, then V− ↑ (since in the instant the output voltage changes, the current

I f will not change). Then, A(V+ − V−) ↓ so Vout ↓, and we have NFB. Therefore,

we apply Golden Rule #2, and the potential at V− must be the same as V+, which

is grounded at 0V. Now, combining our findings, this means the same current Iin

that leads to a Vin voltage drop across the Rin resistor creates a voltage drop across

the R f resistor, and this second voltage drop directly gives Vout! We apply Ohm’s

law: Vin = IinRin =⇒ Iin = Vin
Rin

. Since I f = Iin, 0− Vout = R f · Iin = R f · Vin
Rin

.110 110 Don’t forget passive sign convention! The
negative terminal is at higher potential relative
to Vout, and since V− = 0, we can intuitively
see why Vout is negative.

Rearranging this, we find that for an inverting op-amp:

Vout = Vin

(
−

R f

Rin

)
=⇒ Vout

Vin
= −

R f

Rin
(49)

And so we have the gain! While it can be useful to recognize these configurations

and immediately jump to the corresponding gain expressions, be sure to also practice

systematically analyzing circuits; even encountering differently-drawn versions of

these configurations can throw someone off if they’ve only memorized the results!
111 The course notes go into more detail on these and also analyze more complex 111 The semester after I took EECS 16A, I actu-

ally confused the inverting and non-inverting
op-amp configurations in an interview, and it
was the very first question I was asked! I had
to recover by performing NVA on the spot;
nothing wrong with that!

op-amp configurations.

Loading Effects, Buffering: Let’s clarify what exactly loading is in the context of

circuits, and present a scenario that will motivate this next section.

Suppose you have a lightbulb, modeled as a simple resistor of 50Ω, and we want

to turn on this lightbulb. The greater the power dissipation of the bulb, the brighter

it burns, so we want to maximize the voltage dropped across the bulb. One idea we

might have is to connect a battery to it, resembling the diagram in fig. 18 where the

lightbulb is resistor R. Seems fine, right? Well, the issue is that any battery also has

some internal resistance associated with it, and the wires connecting to the bulb have

resistance too. Let’s model this collective "parasitic" resistance as r, and incorporate

it into our diagram so it looks like fig. 82. Now, we have a voltage divider. Let’s take

a closer look at what happens.
−
+Vbat

Ibat

r

R

Battery Lightbulb

Figure 82: Circuit model for a battery with

internal resistance r connected to a lightbulb

(which acts as the load here) of resistance R.

If r is on the order of a couple of ohms, then the voltage divider equation

eq. (36) readily reveals that the voltage drop across the lightbulb is the majority of

the battery’s voltage, so the bulb will burn brightly as desired. But suppose that
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we’re using a battery with r of 1kΩ. Now, the bulb’s voltage is only a small fraction
50

1050 ≈ 4.7% of the battery’s voltage! We’d observe that the bulb’s brightness is quite

low in this second situation. The issue with this setup arises from the fact that the

voltage drop across the bulb depends on the value of r, which is determined by the

battery’s internal structure. Current flows in this circuit, so some of the battery’s

voltage is lost to the internal resistance of the battery.112 Wouldn’t it be nice to ensure 112 Most often, this just means the battery heats
up over time.

that no matter what r is, the voltage dropped across the bulb was a constant, isolating

it from the source? This is exactly what a unity-gain buffer (fig. 78) can be used for.

Let’s add this buffer into our circuit, isolating the load (lightbulb) from the

source (battery). Our circuit now looks like fig. 83. Notice that the voltage at the

non-inverting input is Vbat, since no current can flow into the op-amp, and the same

voltage appears at the output because of our unity-gain buffer!113 This means that 113 For this to happen, by Ohm’s law, current
must flow out of the op-amp; this is perfectly
fine since it’s only the inputs that current
cannot flow into or out of.

the full Vbat will be dropped across the bulb, and we don’t need to worry about any

loading effects. No matter what the r or R values are,114, the circuit’s behavior is
114 If you have an inner voice or tend to read
things aloud, you definitely sounded like a
pirate there ;)

consistent!

Without the buffer in the middle, the impact of the battery’s resistance on the

bulb depended on specific resistance values. Even using a different kind of wire,

with different resistivity or length, could change our observations! By isolating the

source and the load, we managed to ensure that no voltage is dropped across the

source resistance r and that the load receives the full intended voltage.

−

+

50Ω

r

−
+ Vbat

+

−

Vbulb

Battery Lightbulb

Buffer

Figure 83: Circuit model for a battery power-

ing a lightbulb, but now with a buffer in the

middle. All the voltage with no loss to the

battery’s internal resistance!

Circuit Design Procedure, Current Source Design, Examples: Once again, the

notes are a great way to learn this material; design is one of the most interesting

aspects of learning circuits because you go a step beyond analyzing what’s given to

you. Designing circuits helps you appreciate them more, and though it’s not covered

in the practice sets, it’s still crucial to understand! Not to mention, this is a common

area from which exam questions have been drawn in the past.

Problems

z Problem: Is it true or false that we can use the 2 Golden Rules to analyze any
op-amp circuit?

Answer: False

Quick Solution: The first golden rule states that no current can flow into the
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inputs of an op-amp, and it has a physical basis; the inputs of any op-amp we’ll
study are not connected to anything, they’re just dangling open circuits. However,
the second golden rule, wherein V+ = V− does not apply to op-amps unless they
are wired in negative feedback. Many circuits do not satisfy this criteria, such as
when op-amps are used as comparators (see fig. 84 for an example).

z Problem: Is it true or false that an op-amp can function without external power
supplies?

Answer: False

Quick Solution: Op-amps are limited in their functionality; they simply cannot
output a voltage larger or smaller than what is supplied at their rails, and these
rail voltages are, by definition, external power supplies. Without these supplies,
op-amps will not be able to deliver any power to the load at the output, since the
energy must come from somewhere.

z Problem: Given the circuit in fig. 84, assuming the comparator is not railing, find
an expression for the output voltage in terms of other variables (gain A, resistor
values, supply voltages, and voltage source values).

−

+

1kΩ

−
+Vin

3kΩ

−
+

2V

5V

+

−
Vout

Figure 84: Op-amp comparator circuit for the
problem to the left. Find an expression for the
output voltage!

Answer: Vout = 2.5 + A(2− 3
4 Vin)

Quick Solution: Applying the general op-amp output voltage formula for the
non-clipped region, eq. (47), the answer follows directly from the rails (VDD =

5V, VSS = 0V) and the input voltages (voltage divider for V−, reference source for
V+). Plugging in, Vout = 2.5V + A

(
2− 3

4 Vin
)
.

Long Solution: The important part of this question is that despite using an op-amp
with very, very high gain as a comparator, the region of operation is in the non-
clipped region (blue line region in fig. 76). This effectively means that we can
apply the general op-amp output voltage formula (eq. (47)) to this situation and
Vout, actual = Vout, ideal. Taking careful note of the supply voltage values and the
input voltages, we plug in:

Vout = Vout, ideal =
VDD + VSS

2︸ ︷︷ ︸
rail-determined offset

+ A (V+ −V−)︸ ︷︷ ︸
signal gain

Vout =
5V + 0V

2
+ A (V+ −V−)

At this point, we observe that the non-inverting input V+ is being fed directly
by an independent voltage source, so V+ = 2V. V− is a bit trickier, but the key
realization is that we form a voltage divider, and V− is a fraction of Vin. Specifically,
V− = Vin · 3kΩ

3kΩ+1kΩ = 3
4 Vin. Substituting in, we have our answer:

Vout = 2.5V + A
(

2− 3
4

Vin

)
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z Problem: Why does an op-amp not change the voltage of the circuit it is connected
to? Phrased another way, why does an op-amp not load its input circuitry?

Answer: ∞ input resistance, no input current

Quick Solution: By Golden Rule #1 for all op-amps, the input currents are zero,
so when an op-amp is attached to any circuit block, it won’t draw additional
current, and therefore will not load the circuit block. For an example, consider
the voltage divider at V− of the op-amp in the previous problem. We can apply
the voltage divider formula here because adding the op-amp doesn’t change the
circuit behavior; it doesn’t load the voltage divider.

Long Solution: By definition, circuit blocks are loaded when they are attached to
other blocks/components that change their own behavior. For example, consider
the example in the relevant information section with the lightbulb and the
battery. When the lightbulb is attached, the battery is loaded because the circuit is
completed (a battery just sitting there is just a pair of unattached terminals, no
closed loop exists.) When current flows in the completed circuit, there is a voltage
drop across the internal battery resistance, changing the voltage drop across the
lightbulb.

Here, if an op-amp is attached to some circuit block’s output, then it cannot
draw any current by Golden Rule #1. That is, the op-amp acts as a buffer pre-
venting loading effects. It isolates the "actual load" of the circuit (connected to
the output of the op-amp) from the source (at the input of the op-amp), such that
the intended load can experience all the voltage benefits as if it was connected
to the source, but without loading the source. Op-amps are crucial for allowing
circuit blocks to be combined because any time we add a new block to the output
of an existing circuit, we don’t need to re-analyze the parts of the circuit that came
before.

z Problem: Given some circuit with an op-amp wired in negative feedback, will the
gain of the circuit change if the input polarities are swapped (+ becomes − and
vice versa)? Why or why not? If it helps, use fig. 80 as an example.

Answer: Yes, negative feedback won’t hold.

Quick Solution: Since the circuit was given to be wired in negative feedback
before, by swapping the input polarities, we would wire our op-amp in positive
feedback! Op-amps in positive feedback are highly unstable; minor fluctuations
(even from something like thermal noise!) cause the output voltage to become
amplified to one of the rails. In NFB, if Vout ↑, it self-corrects and soon after,
Vout ↓. But in positive feedback, if Vout ↑small, it reinforces and Vout ↑↑↑ soon after.
Ultimately, this means that Golden Rule #2 no longer applies, and the techniques
we used to solve the original circuit and the corresponding gain expression become
invalid.

z Problem: Is it true or false that an ideal op-amp behaves as though it has infinite
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gain?

Answer: True

Quick Solution: This is one of the core features of an ideal op-amp! See eq. (47)
graph; the reason the center line is such a narrow region is because of the near-
infinite gain. In reality, the gain is very high but not infinite, but the approximation
that V+ = V− in NFB holds only because we assume A = ∞ in this class.

z Problem: Is the gain of the circuit in fig. 85 positive or negative?
−

+

R f

−
+Vs

Rs

+

−
Vout

Figure 85: Circuit associated with the problem
to the left.

Answer: Negative

Quick Solution: This circuit is identical to fig. 81, which has gain Vout
Vs

= − R f
Rs

and
so the gain is negative. This is an exercise in pattern-matching and gaining famil-
iarity with recognizing already-seen configurations with slight modifications; the
fact that this voltage source is not a signal voltage (that is, it’s of somewhat larger
magnitude) doesn’t change anything about the circuit’s fundamental behavior.

z Problem: Given fig. 85 and the following values, calculate the Vout .

VS = 2V, Rs = 50Ω, R f = 100Ω

Answer: Vout = −4V

Quick Solution: We can directly plug into the inverting amplifier gain formula;

Vout = Vs · −
R f
Rs

= −2V · 100
50 = −4V, so Vout = −4V.

Long Solution: Let’s review the intuition for why the gain of this configuration
is negative, and why the ratio of resistors is the determinant of the value of the
gain.

Note that the circuit is in NFB (derived in the relevant information section
of this chapter). This means Golden Rule #2 applies, and the − input of the op-
amp is at 0V (like the + input). The node above the input voltage source is at
potential Vs, so by Ohm’s law, the current flowing through Rs must contribute
Vs voltage drop; that is, Is = Vs

Rs
. Now, all op-amps follow Golden Rule #1, so

none of this Is current will flow into the op-amp; all of it goes through R f . So Is

contributes a voltage drop across the R f resistor, and by passive sign convention,
the left end of R f is at the higher potential. This left end is at 0V so Vout < 0V,
and we can see the gain is negative. If Vs was negative, then current would flow

in the other direction and Vout would be positive. The ratio
R f
Rs

arises from the fact
that the same current must go through both resistors, so the ratio of voltages is
directly proportional to the ratio of resistances.

z Problem: Is fig. 86 in negative feedback? .

−

+

R1

−
+ Vin

R2

+

−

Vout

Figure 86: Circuit associated with the problem
to the left.

Answer: Yes

Quick Solution: We can notice that this is a differently-drawn inverting amplifier
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(as indicated by the grounded + input and resistors R1 and R2 taking the place of
Rs and R f from before. It’s quite easy to mistake this for a non-inverting amplifier,
based on the way it’s drawn; it doesn’t change the answer to this specific question,
but it’s important to be careful!

z Problem: Solve for Vout in fig. 86 in terms of Vin and resistor values.

Answer: Vout = Vin · − R2
R1

Quick Solution: We notice this is an inverting amplifier configuration, and
pattern-match accordingly. Performing full NVA or other rigorous analysis will
yield the same result. The very common mistake is to incorrectly identify the
topology of this amplifier and classify it as a non-inverting configuration, leading
to an incorrect expression for the output voltage.

z Problem: Is it true or false that for reasonable resistor values (positive real resis-
tances), an ideal inverting amplifier (fig. 81) can have any negative gain?

Answer: True

Quick Solution: Looking at the gain expression for an inverting amplifier,
Vout
Vin

= − R2
R1

, it can be seen that with the selection of reasonable resistor values, any
negative gain can be achieved (and this was the intended answer). But keep in
mind, this is only true since an ideal amplifier has no supply rails; if it did, those
would clip the output before it could achieve very negative gains (say, −107 as an
extreme example).

z Problem: Is it true or false that for reasonable resistor values (positive resistances),
an ideal non-inverting amplifier (fig. 80) can have any positive gain?

Answer: False

Quick Solution: Unlike the previous question, where an inverting amplifier can
apply a gain of, say, − 1

10 to a signal, a non-inverting amplifier’s gain expression

is slightly different; as in eq. (48), Vout = Vin ·
(

1 + R2
R1

)
. That is, the ratio of

resistances is always added to the value 1, so even in the limit, the minimum gain
of a non-inverting amplifier is 1. By itself, it cannot achieve a gain of, say, 1

10 , so it
cannot achieve any positive gain.115 115 We could do this by chaining together 2

inverting amplifiers though!

Block A Block B

Figure 87: Two circuit blocks connected by a
wire.

z Problem: Suppose we have 2 circuit blocks A and B, and each one has a specific
function (think of each block as having an intended gain or a specific output
voltage). We want to chain them together so the output of block A is the input
for block B. Will the overall combined circuit’s behavior be the same regardless
of whether we connect the blocks using a wire (as in fig. 87) or an op-amp (as in
fig. 88)?

Answer: These aren’t the same, the op-amp will prevent block B from loading
block A unlike the wire.
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−

+Block A
Block B

Figure 88: Two circuit blocks connected by an
op-amp.

Quick Solution: Recall the example with the lightbulb and the battery in the
relevant information section; in this case, we can think of the battery as
block A and the bulb as block B. It’s the exact same situation that we saw before!
Connecting the lightbulb to the battery with just a wire causes the bulb to load
the battery (and its internal resistance), so the bulb doesn’t experience the full
voltage drop. Similarly here, for any arbitrary functional circuit blocks, there’s no
guarantee that if we add block B to the output of block A using a wire, that there
won’t be backwards-propagating effects that impact the behavior of block A.

This is where the unity-gain buffer comes in! Attaching block B to block A
with a buffer to isolate the two causes the addition of B to have no impact on
the intended, designed behavior of A. Since the unity-gain buffer is connected
in negative feedback, V+ = V− and the output voltage of block A is perfectly
mirrored to the input of block B, as desired.

−

+

3kΩ

1kΩ

+

−

Vin, A

Vout, A

−

+

4kΩ

1kΩ

+

−

Vin, B

Vout, B

Figure 89: Circuit blocks A (left) and B (right),
both are voltage dividers.

−
+Vin

3kΩ

1kΩ

4kΩ

1kΩ

Vout, A = Vin, B

Vout

Figure 90: Voltage dividers connected by wire
(and a bit of restructuring for clarity), output
of A becomes input of B. It should be We want
to find how Vout relates to Vin.

−
+Vin

3kΩ

1kΩ ‖ (4kΩ + 1kΩ)

Vout, A = Vin, B

Figure 91: Let’s simplify the network of
resistors that comes below Vout, A to help
analyze the behavior of block A.

Long Solution: Addendum. In addition to the quick solution, let’s consider a
more concrete (and potentially familiar) example. Say blocks A and B are both
voltage dividers where for block A, the output voltage is 1

4 of the input. for block
B, the output is 1

5 of the input. Individually, the circuits are as given in fig. 89.

We can connect these blocks in the style of fig. 87 or fig. 88, with the intention
being that we first sample 1

4 of the input voltage, and then take 1
5 of that, so

the overall end output is 1
20 of the original input. Does this happen with a wire

connection? The combined circuit to analyze is in fig. 90.

If we calculate the block B divider again in this new setup, we find that the
voltage division from Vout, A to Vout is as expected; 1

5 . But is Vout, A
Vin

the ratio of 1
4

that we would want? If not, then the mere act of attaching block B to the outpu of
block A changeed the behavior of block A; by definition, block A has been loaded
by block B. Let’s check!

We can approach this question using resistor network simplifications. Notice
that fig. 90 is equivalent to fig. 91. Now, we apply the voltage divider formula
and find that since 1kΩ ‖ (4kΩ + 1kΩ) = 5

6 kΩ, the value of Vout, A = Vin ·
5/6kΩ
3kΩ ,

which is 5
18 6=

1
4 . Oh no! We’ve confirmed that the second voltage divider loads

the first one, changing its gain from the original 1
4 to a larger 5

18 . This is why it’s
necessary to use a buffer to prevent loading in these cases.

It’s worth noting that in this case, the amount of loading effect that block B has
on block A is dependent on the raw resistor values unlike some situations we’ve seen
before (such as the basic voltage divider where the ratio says all). If the resistances
in the second divider were on the order of mega-ohms or larger, they’d load block
A much less (the parallel simplification would yield a value much closer to 1kΩ.



Practice Set 10: Locationing and Tri-
lateration

Relevant Equations/Information

Brief Motivation: The motivation for this third module is primarily to learn how

localization works, developing the linear algebra concepts needed along the way.

Consider how GPS works; there are satellites orbiting the Earth, with known

location in space. Given some object, how can we figure out where it is? For each

satellite, once we know how far away it is from the device, the distance information

from all satellites can be combined to determine a unique position in space.116 116 But remember, we need enough satellites!
Consider a similar situation where a friend
calls you and says that they’re 200 feet away
from a landmark building (say, Wheeler). Even
though you may know the location of Wheeler,
your friend could be anywhere around the
building (specifically, anywhere on the circle
with radius 200 feet, centered at the building).
If they specify a second distance to another
unique landmark (say, the Golden Bear Cafe),
then that would help you narrow your friend’s
location down!

Questions arise; how can a device figure out the distance to a satellite? What

happens if there’s no single location that satisfies all the distances measured? How

imperfect can these measurements be to still get a reasonably accurate answer? We

will answer these questions throughout the remaining chapters.

Norms: First, some terminology. The Euclidean norm (or 2-norm) of a vector

~x =
[

x0 x1 . . . xn

]>
represents the vector’s length, or magnitude. It is given by

eq. (50); notice we can compute the norm using the efficient inner product operation

(defined in eq. (51) below).

‖~x‖ =
√

x2
0 + x2

1 . . . x2
n ≡

√
〈~x,~x〉 (50)

Properties:

1. Non-negative Norms: ‖~x‖ ≥ 0, by definition since the magnitude of a vector

cannot be negative.

2. Zero Norm: ‖~x‖ = 0⇐⇒ ~x =~0.117 117⇐⇒ is the same as "if and only if".

3. Scaling a Norm: ‖α~x‖ = α ‖~x‖.

4. Triangle Inequality: ‖~x +~y‖ ≤ ‖~x‖ + ‖~y‖. The vectors may have components

facing in opposite/different directions, so the magnitude of their vector sum

cannot exceed the sum of their magnitudes.118 118 Note the necessary condition: ~x,~y ∈ Rn.

Inner (Dot) Products: Given two vectors ~x,~y of the same length n, the inner
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product between them can be calculated as:

〈~x,~y〉 = x1y1 + x2y2 + · · ·+ xnyn (51)

For example, if ~x =
[
0 1 2 3

]>
and ~y =

[
6 0 1 5

]>
, then 〈~x,~y〉 =

0 · 6 + 1 · 0 + 2 · 1 + 3 · 5 = 0 + 0 + 2 + 15 = 17. Note that the inner product of two

vectors yields a scalar value, not a vector.

Based solely on the properties of multiplication and addition, we can derive the

following about the inner product:

1. inner products are commutative (symmetry): 〈~x,~y〉 = 〈~y,~x〉

2. scaling either vector by a factor k scales the result by k, and the inner product

distributes over vector addition (linearity); 〈α~x + β~y,~z〉 = α 〈~x,~z〉+ β 〈~y,~z〉.

3. Positive-Definite (related to the zero-norm property): for any ~u, 〈~u,~u〉 ≥ 0, and

〈~u,~u〉 = 0 iff ~u = 0.

What significance does an inner product actually have? Generally speaking,

it allows us to find the angle between 2 vectors ~x and ~y, and this angle provides

an approximate sense for the similarity between the vectors. Note that we cannot

just look at the value of the inner product 〈~x,~y〉 in making the judgement about the

vectors’ similarity, due to the scaling property. Making the vectors 10 times longer or

shorter doesn’t make them any more or less aligned with each other! Rather, we deal

with the normalized versions of the vectors; we divide each vector by its length so the

length of the resulting vector is 1, and we can then focus on its direction alone.

To normalize, we say that x̂ = ~x
‖x‖ . The ˆ symbol indicates that we’re dealing

with a unit vector (magnitude = 1).119 119 This is much like î or ĵ, the standard basis
vectors in 2D.

x

y
~x

~y

cos α

sin α

cos β

sin βα β

θ

Figure 92: Diagram to help derive how the

angle between 2 vectors relates to their inner

product.

Let’s derive a generalized result in 2D, with the corresponding diagram in fig. 92.

Note that the angle between the vectors is θ = α− β by construction (the vectors

themselves have been defined in terms of their angle from the x-axis; the cosine of

the angle gives the x-component, the sine gives the y-component). Given any vectors

~x = c1

cos α

sin α

 and ~y = c2

cos β

sin β

, we can show that after normalizing, x̂ =

cos α

sin α


and ŷ =

cos β

sin β

 since
√

cos2 α + sin2 α = 1 and ‖~x‖ = c1, ‖~y‖ = c2. Computing:

〈x̂, ŷ〉 =
〈cos α

sin α

 ,

cos β

sin β

〉 = cos α cos β + sin α sin β = cos(α− β) = cos θ.120 We 120 This is a trigonometric identity, the differ-
ence of cosine angles; see this link for other
identities and derivations.

https://brownmath.com/twt/sumdiff.htm
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conclude that for unit-magnitude vectors, 〈x̂, ŷ〉 = cos θ, where θ is the angle between

the vectors! Thanks to the scaling property, we can now generalize the equation for

vectors of any magnitude:121 121 It might be difficult to visualize this intu-
ition for higher dimensions, but we can always
define a 2D plane that contains the 2 vectors
that we want to take the inner product of (a
plane is uniquely defined by 2 lines). Then,
when we compute the angle between the
vectors, we are finding this angle as measured
in that plane.

〈~x,~y〉 = ‖~x‖ ‖~y‖ cos θ. (52)

Cauchy-Schwartz Inequality: This theorem states that the magnitude of the inner

product of 2 vectors must be less than the product of the norms of the 2 vectors:∣∣ 〈~x,~y〉
∣∣ ≤ ‖~x‖ ‖~y‖ (53)

cos θ cannot be larger than 1 for any θ; observing the form of eq. (52), the

equation above must hold true. Applying the inner product operation will "preserve"

the lengths most when the vectors are perfectly aligned (θ = 0◦), but certainly cannot

be larger than the individual norms multiplied.

x

y

~xo

~yo

Figure 93: Orthogonal vectors in R2.

x

y

~xno

~yno

Figure 94: Non-orthogonal vectors in R2.

Orthogonal Vectors: Orthogonal is a similar word to perpendicular but is more

generally used in higher dimensions,122 and two vectors are orthogonal if their inner

122 See this post for more terminology detail.

product is zero. For example, the vectors ~xo, ~yo in fig. 93 are orthogonal; we see this

visually, and we can show this by computing that 〈~x,~y〉 = 2 · 3 + 3 · −2 = 0. But the

vectors ~xno, ~yno in fig. 94 are not orthogonal, as 〈 ~xno, ~yno〉 = 1 · 2 + 3 · −3 = −7 6= 0.

Vector Operations: The act of computing an inner product is very simple com-

putationally; it’s just a few additions and multiplications, so computers are highly

optimized for computing inner products. Therefore, it is useful to represent other

common operations in terms of inner products. Suppose we define a vector ~x =[
x0 x1 . . . xn

]>
; a couple simple examples of such operations on ~x follow:

1. Addition: to add the elements in ~x, define ~y
(
∈ RN) = [1 1 . . . 1

]>
(the "all

ones" vector) and compute 〈~x,~y〉 = x0 + x1 + . . . + xn.
2. Averaging: to average the elements in ~x, define the "averaging" vector ~y

(
∈ RN) =[

1
n

1
n . . . 1

n

]>
and compute 〈~x,~y〉 = x0+x1+...+xn

n .

2D Intro to Projections: The vector projection of ~x onto ~y refers to the component

of ~x that is aligned in the same direction as ~y (or exactly opposite; it helps to imagine a

line going through ~y). Therefore, if the projection of ~x onto ~y, denoted proj~y~x, is zero,

then the vectors are orthogonal; there is no component of ~x that is aligned with ~y.

Observe fig. 95; here, ~x can be broken up into 2 components; the first (~x‖) is

parallel to ~y, the second ( ~x⊥) is perpendicular. A note on terminology, the length of

the parallel component
∥∥∥~x‖∥∥∥ gives the scalar projection of ~x onto ~y. But we want the

https://math.stackexchange.com/questions/2406260/difference-between-perpendicular-orthogonal-and-normal
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vector projection, which is the vector with the same length pointing in the direction

of ~y. This is what we’ll calculate!

x

y

~x

~y

~x⊥

~x‖

Figure 95: Diagram to illustrate the projection

of ~x onto ~y.

Given ~x and ~y, how do we calculate the vector projection proj~y~x? We note that

the length of the parallel component,
∥∥∥~x‖∥∥∥ can be expressed as cos θ · ‖~x‖, where θ is

the angle between ~x and ~y. Rearranging the inner product formula (eq. (52)), we find

that cos θ = 〈~x,~y〉
‖~x‖‖~y‖ . Combining the results:

∥∥∥~x‖∥∥∥ =
(
〈~x,~y〉
‖~x‖‖~y‖

)
‖~x‖. Simplifying:

comp~y~x =
∥∥∥~x‖∥∥∥ =

〈~x,~y〉
‖~y‖ (54)

This expression is the scalar projection of ~x onto ~y! Now that we have this, to

find the vector projection, we multiply this scalar by the unit vector in the direction

of ~y. Since ŷ =
~y
‖~y‖ , we write that:

proj~y~x =
(

comp~y~x
)

ŷ ≡
(
〈~x,~y〉
‖~y‖

)
~y
‖~y‖ ≡

〈~x,~y〉
‖~y‖2 ~y (55)

The vector projection comes up most in applications, but it’s good to know both

kinds! Projections extend beyond 2 dimensions as well; this aspect is discussed more

in the next chapter in connection to Least Squares.

Cross-Correlation: For a device to know its location, one of the most important

tasks it must do is find the distance to various satellites (which have known positions

in space, but unknown locations relative to the device.) The satellites will send

known messages, also known as signals; the device must analyze these signals to

figure out how far away it’s coming from.

1 2 3 4 5 6

−4

−2

2

4

t (sec)

s[t]

Figure 96: An example of a discrete time

signal. Notice that at a time like 0.4s, there is

no defined data value; it only exists at every

second.

What form do the signals take? They are discrete-time signals composed of

a sequence of values (data points), and these signals are defined only at specific

intervals in time (every pair of samples has ∆ seconds between them. For convenience

I often use ∆ = 1.) This is in contrast to a continuous-time signal, which has a

defined value at all points in time. See fig. 96 for an example of a discrete-time

signal
(
~s =

[
0 1 −3 4 1 −5 3

]>)
. This signal can be represented either as

a graph as in the figure, or as a vector where the value at each index is one of the

samples. We will use indexing notation to refer to specific elements of this vector; s[0]

is the value (height of the "lollipop") at t = 0. For example, s[0] = 0 and s[2] = −3.

Also, these signals have a default value of zero at any indices that aren’t contained in

the given vector/graph.

To achieve our goal of analyzing a signal to determine the distance to its sender,
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we need a way of measuring the similarity between 2 signals. The first signal is the

message we know the satellite is sending; the second signal is the message the device

actually receives, which is the same sequence of values but after some unknown

time-delay τ (since the message takes time to get from the satellite to the device).

There may also be some attenuation; the signal gets weaker as it goes farther, so the

received values might be scaled versions of the originals. Once we have the delay τ,

then we can find the distance to that satellite as d = τ · v (velocity of light or sound)

Formally, we write the cross-correlation vector for signals ~x, ~y as follows, where

~y(d) denotes a shift (delay) of d seconds:

corr~x(~y)[d] =
∞

∑
n=−∞

x[n] y[n− d] =
〈
~x,~y(d)

〉
(56)

~x and ~y are the received/sent signals (varies by application) and corr~x(~y)[d] is the

d-th element of their cross-correlation (at a delay of d seconds).123 The infinite sum 123 If the signals aren’t of the same length, no
problem! Just add zeros to the smaller vector’s
end so their lengths match.becomes a finite sum since the signals contain zeros everywhere they aren’t explicitly

defined, leading to zeroed values in the correlation vector. We omit these from the

result, focusing on the nonzero values where the signals actually overlap.

1 2 3 4 5 6 7

5

10

t (sec)

s1[t]

Figure 97: Sample periodic signal that a

satellite might send.

1 2 3 4 5 6 7

5

10

t (sec)

r1[t]

Figure 98: Sample signal that a phone might

receive from the satellite in fig. 97.

Circular Correlation For Locationing: Suppose a satellite emits a periodic signal ~s1

in the form of a "ramp," as displayed in fig. 97, and the device receives the signal ~r1 in

fig. 98. By how much was the signal delayed?124 We can visually compare ~s1 and ~r1

124 Note that in practical applications, this
delay needs to be positive. You can’t receive a
message before it’s sent!

to determine that the delay is 2 seconds (data points on the ~r1 appear 2 seconds after

their corresponding position in the sent signal). The received signal was attenuated

by a factor of 1
3 , but the "shape" stayed the same, so we could effectively find the

delay.

But what is the computational analog to this comparing process? Given 2 signals,

computing and analyzing their cross-correlation can help us figure out the shift

(in seconds) the message has experienced in traveling from satellite to device, and

this can be used to find the distance! The cross-correlation of two signals is itself a

vector, where each index d in the vector represents the inner product between the raw

received signal (~r[n] for all n) and an d-delayed version of the sent signal (~s[n− d] for

all n). As we’ve seen, the inner product provides a sense for the similarity between 2

vectors, so the higher the value, the more similar the vectors are. The cross-correlation

checks the inner product at all relative shifts between the signals, so it tells us how

similar two signals are at every shift. Once we have the cross-correlation vector, we
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want to find the index at which the value is maximized, because this index represents

the amount of shift/delay the sent signal likely experienced.125 125 The cross-correlation of 2 periodic vectors
will be infinitely long! However, it will itself
have the same period as the original signal, so
we can focus on just a segment of the cross-
correlation vector. Another note; one might
wonder how to tell whether the delay in the
examples of fig. 98 and fig. 97 was 2 seconds,
or actually 6 seconds; they’d look the same at
the receiver end! In reality, the satellites might
be equipped with clocks to provide a sort of
meta-reference.

So, say we have signals ~s2 and ~r2, and they represent a situation with some delay

τ and attenuation factor α. We write that r2[d] = αs2[d− τ]. But we can’t plot them

to visually determine the value of τ or α, and we’d find that trying to solve for these

using standard algebraic techniques reveals a nonlinear relationship between τ, ~r

and~s. Let’s use cross-correlation to find the optimal index.

~s2 =
[
6 3 4 1 9 10

]>
~r2 =

[
2 0.5 4.5 5 3 1.5

]>

1 2 3 4 5

50

100

150

index

corr~r(~s)

Figure 99: Result of cross-correlation of ~r2 and

~s2.

We start by calculating the cross-correlation at zero-shift:

corr~r(~s)[0] =
∞

∑
n=−∞

r[n] s[n] =
〈
~r,~s(0)

〉
= 12 + 1.5 + 18 + 5 + 27 + 15 = 78.5

Next, at a shift of +1:

corr~r(~s)[1] =
∞

∑
n=−∞

r[n] s[n− 1] =
〈
~r,~s(1)

〉
= 20 + 3 + 13.5 + 20 + 3 + 13.5 = 73

Repeating for all samples, we get the following final vector:

corr~r(~s) =
[
. . . 78.5 73 78.5 96.5 121.5 96.5 . . .

]>
where the dots represent periodic repetitions. We can conclude that the shift is 4

samples since the 4th index has the largest magnitude (121.5).126 As a sanity check, 126 or 10, 16, 22, ... samples.

this makes sense when viewing the cross-correlation plot, in fig. 99. After finding

τ, finding the attenuation is as simple as taking the ratio between corresponding

elements in the received signal and the shifted sent signal.

We can find the vector above directly using the following formula for circular-

correlation (out of scope in Su20), where the N subscript denotes modulo arithmetic:

circcorr(~x,~y)[k] =
N−1

∑
i=0

x[i] y[(i− k)N ] (57)

If we expand this out fully, then given~s and~r, we could write:127 127 Each row of the circulant matrix represents
one of the possible shifts of the signal vector.
It’s inner products en-masse once we do the
matrix-vector multiplication!

circcorr(~r,~s) =


− ~s(0)

> −

− ~s(1)
> −

...

− ~s(N−1)> −



|

~r

|


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=



s[0] s[1] . . . s[N − 2] s[N − 1]

s[N − 1] s[0] . . . s[N − 3] s[N − 2]
...

...

s[2] s[3] . . . s[0] s[1]

s[1] s[2] . . . s[N − 1] s[0]


︸ ︷︷ ︸

C~s


|

~r

|



= C~s~r

The bracketed matrix is called the circulant matrix, and simply populating it

using all the shifts of~s gives a convenient way to use matrix-vector multiplication and

jump to the result. This isn’t in scope this semester (Su20),128 and circular correlation 128 I include it because of the practice problems
that ask about it.

is explained more in the notes.129

129 Note that both the cross-correlation and
circular correlation are not commutative;
this intuitively follows from how saying that
the sent signal must be shifted forward to
match the received signal is not the same as
saying that the received signal must be shifted
forward to match the sent signal.

Trilateration: Trilateration is the act of using the distances from the device to each

satellite in order to determine device’s location. A simple intuitive example to keep in

mind is the example with the friend wandering around Berkeley’s campus, presented

earlier. The sections above cover the details of how to find these distances, but what

can we do with them?

d1

d2

d3

p

s1

s2

s3

Figure 100: Diagram illustrating 2D location-

ing of a phone using 3 satellites.

We label the scenario as in fig. 100, with a phone somewhere in space with

location ~p =
[ p1

p2

]
, and satellites at unique locations ~s1, ~s2, ~s3 (of the form

[ si,1
si,2

]
for

each satellite i). We assume that the satellites are not all collinear (their locations

do not all lie on the same line); if they did, then we might not be able to uniquely

determine a position for the phone.130 The locations of these are known, as are the

130 If this is confusing, there’s a practice
problem about this concept, with some visual
examples to illustrate the point in more detail.

distances d1, d2, and d3 from each satellite to ~p; the goal is to determine ~p.

Applying the concept of norms to vectors, we write the following 3 equations:

1. ‖~p− ~s1‖2 = d2
1 =⇒ ~p>~p− 2~s1

>~p + ‖~s1‖2 = d2
1

2. ‖~p− ~s2‖2 = d2
2 =⇒ ~p>~p− 2~s2

>~p + ‖~s2‖2 = d2
2

3. ‖~p− ~s3‖2 = d2
3 =⇒ ~p>~p− 2~s3

>~p + ‖~s3‖2 = d2
3

While we might hope that this is all we need to solve for the 2D coordinates of

~p, it turns out that these ~p>~p terms are problematic; we can’t use linear algebra on

nonlinear equations! There’s a trick we can apply to "sacrifice" one of our equations

for the good of the remaining ones; by subtracting the first equation from the second

and the third, the second and third equations become linear since the ~p>~p terms
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disappear: (
2(~s1 − ~s2)

>
)
~p = ‖~s1‖2 − ‖~s2‖2 − d2

1 + d2
2(

2(~s1 − ~s3)
>
)
~p = ‖~s1‖2 − ‖~s3‖2 − d2

1 + d2
3

We can solve the following matrix for ~p since all the matrix entries come from

known values: 2(~s1 − ~s2)
>

2(~s1 − ~s3)
>

p1

p2

 =

‖~s1‖2 − ‖~s2‖2 − d2
1 + d2

2

‖~s1‖2 − ‖~s3‖2 − d2
1 + d2

3


These 2 linear equations form a solvable linear system in ~p since ~p =

[ p1
p2

]
is a

2-coordinate location! Therefore, assuming ideal conditions (no satellite collinearity)

if we have 3 satellites, we can solve for a 2D location; with 5 satellites, we could

solve for a 4-coordinate location. In all cases, one of the "dimensions" is always lost

since we have to use one equation to linearize the remaining equations. Then, we

can apply linear algebra and convert the information into a solvable system.

Problems

z Problem: Based on the contents of this chapter, given 2 vectors ~v1, ~v2 ∈ RN , what
is one way to check whether or not they are orthogonal?

Answer: assert: 〈~v1, ~v2〉 = 0, else not orthogonal

Quick Solution: We can take the inner product of the 2 vectors, and the resulting
value is related to the cosine of the angle between the vectors (θ) as given by
eq. (52). For the vectors to be orthogonal, θ must be 90◦; note that we define θ

to be measured in the 2D plane containing the 2 vectors of interest, so it doesn’t
matter how long the vectors themselves are; the logic always holds!

If the result is zero, then we know that cos θ = 0 (since the vectors themselves
are assumed to be nonzero, and their magnitudes must then be nonzero based on
a property we derived above). Therefore, ~v1 ⊥ ~v2 iff 〈~v1, ~v2〉 = 0.

z Problem: Is it true or false that for orthogonal vectors ~u and ~v that ‖~u +~v‖ =

‖~u‖+ ‖~v‖?

Answer: False

Quick Solution: We can generate a simple counter example; the standard basis
vectors in 2D. î =

[
1
0
]
, ĵ =

[
0
1
]
, each with magnitude 1. î + ĵ =

[
1
1

]
, with

magnitude
√

2 6= 2.

Alternatively, it is noted in the relevant information section that norms
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obey the triangle inequality; the extreme case of the sum of norms equaling the
norm of sums only happens when the vectors point in the exact same direction,
not if they’re orthogonal to each other. In this second case, the length of the
second vector is not in the same direction as the first, so some portion of the
second vector’s length goes into changing the "direction" of the resulting vector,
as opposed to its magnitude.

z Problem: Is it true or false that for linearly dependent vectors ~u and ~v that
‖〈~u,~v〉‖ = ‖~u‖ ‖~v‖?

Answer: True

Quick Solution: If the vectors are linearly dependent, then they must be aligned
in the same (or exact opposite) directions; this means that the angle between them
must be θ = 0◦.131 Observing eq. (52), if θ = 0◦, cos θ = 1, and so the given 131 Technically, θ = 0 or± 180.

statement holds directly!

Alternatively we can take the inner product for vectors that are linearly depen-
dent (~v = α~u) as follows::132 132 Note that fluency with the norm/inner

product properties is necessary to take this
approach.‖〈~u,~v〉‖ = ‖〈~u, α~u〉‖

= ‖α 〈~u,~u〉‖
= α ‖〈~u,~u〉‖

= α ‖~u‖2

= α ‖~u‖ ‖~u‖
= ‖~u‖ ‖α~u‖
= ‖~u‖ ‖~v‖ �

z Problem: Suppose we redefine the inner product definition (for 2-element vectors)

as follows; previously, 〈~x,~y〉 = ~x>~y. But now, 〈~x,~y〉 = ~x>
[

1 0
0 0

]
~y. Does this new

definition satisfy the inner product properties (commutativity, linearity, positive-
definiteness)? See relevant information for a recap of these properties.

Answer: No

Quick Solution: Observing the the middle matrix will effectively "zero out" the
second component of ~x, we can generate a counterexample to the Positive-Definite

property. If ~x =
[
0 1

]
, then 〈~x,~x〉 = 0 even though ~x 6= 0. The middle matrix

zeroed out an entry that would have been retained in the original definition, and
so this new definition doesn’t follow the requisite properties.

Long Solution: Suppose that we didn’t notice how the matrix zeroed out certain
entries, and therefore weren’t led to come up a counterexample to that specific
property. In that case, we fall back to the rigorous approach apply the formula
directly to see if everything’s satisfied:
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1. Commutativity:

〈~x,~y〉 ?
= 〈~y,~x〉〈[

x1

x2

]
,

[
y1

y2

]〉
?
=

〈[
y1

y2

]
,

[
x1

x2

]〉
[

x1 x2

] [1 0
0 0

] [
y1

y2

]
?
=
[
y1 y2

] [1 0
0 0

] [
x1

x2

]
x1y1

3
= y1x1

2. Linearity:

〈α~x + β~y,~z〉 ?
= α 〈~x,~z〉+ β 〈~y,~z〉〈[

αx1

αx2

]
+

[
βy1

βy2

]
,

[
z1

z2

]〉
?
= α

〈[
x1

x2

]
,

[
z1

z2

]〉
+ β

〈[
y1

y2

]
,

[
z1

z2

]〉
[
αx1 + βy1 αx2 + βy2

] [1 0
0 0

] [
z1

z2

]
?
= α

([
x1 x2

] [1 0
0 0

] [
z1

z2

])
+ β

([
y1 y2

] [1 0
0 0

] [
z1

z2

])
(αx1 + βy1)z1

3
= αx1z1 + βy1z1

3. Positive-Definite (for non-zero ~x):

〈~x,~x〉
?
6= 0〈[

x1

αx2

]
,

[
x1

βx2

]〉
?
= 0

[
x1 x2

] [1 0
0 0

] [
x1

x2

]
?
= 0

x2
1

3
= 0

While we’ve shown that x1 = 0, Notice that there’s no restriction on the value of
x2! This second value can be anything; no matter what, it becomes zeroed out
by the middle sifting matrix, so the Positive-Definite property is not satisfied;
the entire vector ~x does not need to be 0’s in order for 〈~x,~x〉 = 0.

z Problem: For ~x and ~y, given that ‖~x‖ = 1, what is proj~x~y?

Answer: 〈~y,~x〉~x

Quick Solution: We can use the vector projection formula eq. (55) as a starting
point, noting that we’re asked here for the projection of ~y onto ~x, not ~x onto ~y as
in previous examples/derivations:

proj~x~y =

(
〈~y,~x〉
‖~x‖

)
~x
‖~x‖

=

(
〈~y,~x〉

1

)
~x
1

= 〈~y,~x〉~x
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z Problem: Find the vector projection of

[
2
3

]
onto

[
3
4

]
.

Answer: proj[ 3
4

][ 2
3
]
=

[
54/25

72/25

]
Quick Solution: We apply the formula in eq. (55):

proj[ 3
4

][ 2
3
]
=

〈[
2
3

]
,

[
3
4

]〉
∥∥∥∥∥
[

3
4

]∥∥∥∥∥
2

[
3
4

]

=
2 · 3 + 3 · 4
(
√

32 + 42)2

[
3
4

]

=
18
25

[
3
4

]

=

[
54/25

72/25

]

z Problem: Is it true or false that we can always uniquely determine our position in
an n dimensional space using n + 1 satellites?

Answer: False

Long Solution: The trivial counterexample would be if we have multiple satellites
occupying the exact same position in space, so that those satellites are the same
distance from the device and their equations are the same; then, the redundant
satellites aren’t providing any new information. For example, if we have 3 satellites
on top of each other in 2D space, the device could be anywhere in the circle (that
defines the set of points at a certain distance away from the satellite). But what if
we say that all satellites need to be at unique locations?

d1
d2

d3

s1

s2

s3

Figure 101: The information from each satellite
combines to yield a single, unique location at
their intersection.

s1 s2 s3

Figure 102: In this special case, collinear
satellites are perfectly located so that they can
uniquely define a device position.

s1s2 s3

Figure 103: Since the satellites are collinear,
it is possible to find a configuration such as
this one, where there is not just one potential
location for the device.

We can try generating counterexamples based on our experience with 2D
locations and 3 satellites. In the diagram in fig. 100, we could effectively figure
out our 2D position using 3 satellites; one of the distance equations was used to
linearize the others, and then the resulting system of linear equations could be
solved for a position. The analogous diagram with circle-intersections is in fig. 101.
Notice that only 1 location satisfies the constraints from the satellites. Each circle
represents the set of possible points for the device based on the information from
that satellite alone. 133

133 In 3D, we would have spheres instead of cir-
cles, and hyperspheres in higher dimensions.

However, consider the situation where there are 3 collinear satellites in 2D
space; the intersections of the circles would not necessarily be in a single spot. It
could be, such as in the case of 3 internally tangent circles as in fig. 102, but the
resulting trilateration diagram could also look like fig. 103. In this second case,
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there are 2 distinct points that both satisfy the distance measurements of all 3

satellites, so we cannot always uniquely determine the device’s position.

z Problem: As a device that knows a satellite’s periodic message~s, you receive a
vector ~r. Calculating circcorr(~r,~s) = C~s~r, you find the vector is as given below.
How many samples of delay would you estimate the signal underwent in traveling
to you from the satellite?

circcorr(~r,~s) =
[
−32 −32 16 16 96 24

]>
Answer: 4 samples

Quick Solution: The cross-correlation vector gives the inner product between
the received message~r and every version of the shifted sent signal (~s(0),~s(1), . . .).
The index in the vector gives the amount of shift (for example, the inner product
between~r and~s(0) (no shift) yielded −32). Since the inner product is a measure of
the similarity between 2 vectors, the index of the cross-correlation vector where
the value is the highest denotes the shift applied to the sent signal for maximum
similarity. In this case, since the 4th index (96) is the highest value in the vector,
we conclude that the sent signal underwent 4 samples of delay in travelling to the
receiver. We had to shift the signal 4 samples forward in order to best match the
received signal.

z Problem: Is it true or false that ‖C~x~y‖ =
∥∥∥C~y~x

∥∥∥?

Answer: True

Quick Solution: Note that this question concerns the norms; not the circular
correlations themselves. Observing the formula for circular correlation in eq. (57),
the only difference between the 2 expressions circcorr(~x,~y) and circcorr(~y,~x) is
the index in which a given inner product will appear; the entries themselves
will be the same, just reversed. Therefore, the norms will be the same, since the
calculation for a vector’s norm depends only on the values themselves, not their
indices within the vector.

z Problem: Is it true or false that the result of projecting ~y onto ~v is the same as the
projection of ~y onto a nonzero, scaled vector α~v?

Answer: True

Quick Solution: Note that the length of the vector being projected onto doesn’t
factor into the value of the vector projection at all in the end; the only aspect of the
vector being projected onto that affects the vector projection is its direction, since
we scale it down to a unit vector before multiplying it by the scalar projection.

Long Solution: Consider eq. (55); scaling ~y by a constant multiplies the inner
product by the constant, the norm by the square of the constant, and the vector
itself again by the constant; the combined effects cancel out!
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Using the properties of norms and inner products, we can show this rigorously;
projecting onto a linearly dependent, nonzero version of a vector is the same as
the projection onto the original vector.

proj~v~y
?
= projα~v~y(

〈~y,~v〉
‖~v‖

)
~v
‖~v‖

?
=

(
〈~y, α~v〉
‖α~v‖

)
α~v
‖α~v‖(

〈~y,~v〉
‖~v‖

)
~v
‖~v‖

?
=

(
α 〈~y,~v〉
α ‖~v‖

)
α~v

α ‖~v‖(
〈~y,~v〉
‖~v‖

)
~v
‖~v‖

3
=

(
〈~y,~v〉
‖~v‖

)
~v
‖~v‖

The constant α terms cancelled out, as expected!



Practice Set 11: Least Squares

Relevant Equations/Information

Why Least Squares?: In Module 1, we primarily concerned ourselves with tech-

niques to figure out if the system at hand had a unique solution. If there was no set

of values that could satisfy the system, we concluded that it had no solutions. But in

reality, almost all of the systems we solve will have noisy data and measurements, so

arriving at a unique solution is quite rare. In the absence of a solution vector that

satisfies all the given information, what can we do?

The least squares technique yields a solution that satisfies all the given equa-

tions/information as closely as possible (based on our definition of "close," presented

below). By collecting more information (so we have more equations than unknowns),

we will focus on solving over-determined systems. These may not (likely will not)

have a single set of variable values that satisfy all the equations, but least squares

will allow us to reject the measurement noisiness as much as possible.

What is Least Squares?: The least squares problem can be formulated as follows:

Find an optimal "solution"134 vector ~x such that the difference between the actual 134 Note that solution is in quotes since ~x will
not satisfy many of the equations individually;
the goal is to make it match the system as a
whole as best as possible.

observed values (~b) and the system’s predicted values ( A
m×n

~x) is as small as possible. We

denote this difference the "error vector" ~e, the magnitude (norm) of which we seek to

minimize. The term "least squares" arises from the fact that ‖~e‖ =
√

e2
1 + e2

2 + · · ·+ e2
n.

We are trying to minimize the sum of the squares of ~e’s elements.

Mathematically, we have that~e =~b−A~x, or that~b−~e = A~x; recalling the matrix-

vector product (columns-based interpretation) from many chapters ago, eq. (8), we

recognize that A~x is a linear combination of the columns of A135, with weights given 135 Note that the span of the column space of A
is denoted col(A), as in Module 1 chapters.

by the elements of ~x. We want to minimize the error, which means selecting weights

x1, . . . , xn to pick a point in col(A) as close to~b as possible.

Based on the dimensions of A alone (more equations that unknowns, m > n),

we can see that the columns span an n-dimensional subspace within the larger

m-dimensional space that ~e and~b lie in, so~b cannot be exactly reached by A~x.

Generalized Minimization of Error~e: In the previous chapter, we derived the 2D
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scalar and vector projection formulae; here, we introduce least squares notation and

connect it to the idea of minimizing the distance between~b and col(A).

Consider fig. 104, a very similar diagram to fig. 95 but labeled differently to ease

the transition to least squares analysis. We decided that the projection of~b onto ~a1

should be the parallel component of~b that aligns in the same direction as ~a1, and

this would be some scaled portion α~a1. Any other scalar α′ 6= α would increase the

error vector’s magnitude as ~e would no longer be orthogonal to ~a1.136 136 If this doesn’t make intuitive sense, the
notes derive why this is the case.

x

y

~b

~a1

b⊥ = ~e

b‖ = α~a1

Figure 104: 2D vector projection, with least

squares notation.

We can generalize this logic to higher dimensions; choosing weights ~x for the

columns of A creates a vector, and the set of all these vectors for all ~x defines the

column space of A. Given that~b contains some known information, our task is to

select the specific ~x where the error is orthogonal to col(A), because intuitively, this

will minimize ‖~e‖ ≡
∥∥∥~b−A~x

∥∥∥. That is, for a system defined by the corresponding

matrix A, we want to find ~x where ~e ⊥ col(A).137

137 There are two approaches to more rigor-
ously proving this result; geometrically (for 3D
at least) and algebraically (for any dimension,
using the properties of inner products). Both
are shown in the notes.

Deriving Least Squares Formula: We’ve established that an optimal vector ~e will

satisfy that ~e ⊥ col(A), meaning ~e ⊥ ~ai for each column of A.138

138 Linear combinations of these column
vectors are in col(A) by definition, so the
individual vectors must be in col(A) also.

Mathematically, for all i ∈ 0 . . . n:

〈~e,~ai〉 = 0

=⇒
〈
~b−A~x,~ai

〉
= 0

=⇒ ~ai
>
(
~b−A~x

)
= 0

The last equation follows from how the inner product can be viewed as a matrix

multiplication of a row vector and a column vector. Writing out these equations:

~a1
>
(
~b−A~x

)
= 0

~a2
>
(
~b−A~x

)
= 0
...

~an
>
(
~b−A~x

)
= 0

The transpose ~ai
> of a column vector ~ai is a row vector, we can vertically combine all

these equations (the (~b−A~x) term is the same for all of them, and the 0 becomes a

vector,~0): 
− ~a>1 −

− ~a>2 −
...

− ~a>n −


(
~b−A~x

)
=~0
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Now, we’ve formed the transpose of A on the left side! So:

A>
(
~b−A~x

)
=~0

Solving for ~x in terms of the known quantities (entries of A and~b come from the col-

lected data/information), being sure to follow the basic rules of matrix multiplication

and inversion:

A>
(
~b−A~x

)
=~0

A>~b−A>A~x =~0

A>A~x = A>~b

~x =
(

A>A
)−1

A>~b (58)

And there we have it! The final least squares equation is given by eq. (58). We made

an important assumption in the derivation above, namely that A>A is invertible. Is

this a valid assumption? As it turns out,139 if A has independent columns, then A 139 See the course notes for details!

has a trivial null-space (as does the square matrix A>A
n×n

). A>A is then invertible!

The final concept to consider is how the predicted values of ~b (we’ll call this

~bpred) can be calculated from our calculated optimal ~x, and how this compared to

the original~b values. Since we have an expression for ~x, we find that:

~bpred = A~x = A
(

A>A
)−1

A>~b

And the error, by definition (and as expected), is ~e =~b−~bpred.

Basic Worked Least Squares Example:

Example: Find the best-fit line for the points {(1, 0), (1.5, 3), (2, 3.5), (5, 6)}. See

fig. 105.

x

y

•

•
•

•

Figure 105: Plotting the given points for the

example problem.

Solution: Since no line (expressed as y = mx + b) goes through all 4 points, this is not

a system with an exact solution. We also have 4 points (4 pieces of information, 4

equations), but only 2 points are needed to define a line; since the system has more

equations than unknowns (constants m and b in the equation for a line), we can apply

least squares here to reject the impact of noise. For this function, the inputs are the

x-coordinates, and the outputs are the y-coordinates.

Using the given data, we want to construct a model that can take other inputs

and give predictions of the output. Note the assumption here that the underlying

situation or model that generated these data is actually linear; we’re trying to model

the system by solving for the slope m and intercept b. It’s just that the data is noisy
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so the points don’t actually fall on a line as they should. Feel free to guess at the

approximate equation for a best-fit line, and see how the results compare!

The equation given by the first point, (1, 0), is m · 1 + b ≡ m + b = 0. The second

point gives 1.5m + b = 3, and so on. Formulating our equations as a matrix-vector

product of coefficients (using the points we have) and unknowns (m, b):

A =


1 1

1.5 1

2 1

5 1

 ~x =

m

b

 ~b =


0

3

3.5

6


We can apply the least squares equation in eq. (58), noting that all dimensions

match as they should for the multiplications to be valid:

~x =
(

A>A
)−1

A>~b

m

b

 =


1 1.5 2 5

1 1 1 1




1 1

1.5 1

2 1

5 1





−1 1 1.5 2 5

1 1 1 1




0

3

3.5

6


=

32.25 9.5

9.5 4

−1 41.5

12.5


=

 0.103226 −0.245161

−0.245161 0.832258

41.5

12.5


=

 1.21912

0.229044


Based on this result, our best-fit line has slope m = 1.21912 and y-intercept

b = 0.229044; that is y = 1.21912x + 0.229044.140 How good is this result? Let’s 140 The numbers aren’t that nice; data in
practical applications rarely is :’(

superimpose the line with the raw data in fig. 106. We can also calculate

~bpred = A~x =


1 1

1.5 1

2 1

5 1


 1.21912

0.229044

 =


1.44816

2.05772

2.66728

6.32464


Plotting these points in black in fig. 106, we can see how they compare to the data.

Looks like the line is a good fit!

x

y

y = 1.21912x + 0.229044

•

•
•

•

•
•

•

•

1.44816

0.94228
0.83272

0.32464

Figure 106: The data from~b is plotted in

blue, the predictions from~bpred are in black.

The error for each measurement (called

thee residual) is in red. Naturally, since the

predictions came from the best-fit line we

obtained via least squares analysis, they

coincide.
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The (optimal) error vector is ~e =


−1.44816

0.94228

0.83272

−0.32464

, with negative entries indicating

where the model overestimates the data. ‖~e‖ = 1.9452; no other line can yield a

smaller error. For example, say we picked the similar equation y = 1.25x + 0.25; ‖~e‖

would be 1.956 > 1.9452.

Problems

z Problem: Is it true or false that least squares is a method used to solve under-
determined systems of linear equations?

Answer: False

Quick Solution: Least squares is actually used in the cases of over-determined
systems. The reason that we want to collect as much information and data as
possible about a system, even though this makes it very unlikely that we can arrive
at a unique solution (using a technique such as gaussian elimination) is so that we
can arrive at as good a solution as possible. This solution is one that minimizes
the error between the observed and predicted values.

The equations probably cannot be all simultaneously solved by a single ~x, but
using least squares will allow us to reject the data’s noise as much as possible and
model the underlying linear system as accurately as possible.

z Problem: Given the equation below, solve for the least squares optimal ~x.1 2
1 0
0 1

~x =

 2
0
−8


Answer: ~x =

[
3
−2

]
Quick Solution: We can directly apply the least squares formula we’ve derived,
eq. (58):

~x =
(

A>A
)−1

A>~b

[
x1

x2

]
=

[1 1 0
2 0 1

] 1 2
1 0
0 1



−1 [

1 1 0
2 0 1

]  2
0
−8


=

([
2 2
2 5

])−1 [
2
−4

]
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=

[
5/6 −1/3

−1/3 1/3

] [
2
−4

]

=

[
3
−2

]

z Problem: Is it true or false that least squares always has a unique solution (that is,
for ~x =

(
A>A

)−1
A>~b, ~x is unique)?

Answer: False

Quick Solution: If the column vectors of A are not linearly independent, then
null(A) (and therefore null(A>A)) are not trivial. If A>A has a nontrivial
null-space, it is not invertible, so a unique solution to the system cannot be found.

Let’s consider why we would have multiple solutions (infinite, actually) in the
case of nontrivial null(A>A). Note that by definition of a nontrivial null-space,
there exists a linear combination of the columns of null(A>A) that equals zero.
You can then always add such a linear combination to whatever optimal ~x solution
we obtain, yielding yet another ~x′ that minimizes ‖~e‖. We can always remove the
redundant columns from A to ensure that least squares yields a unique solution.

z Problem: Is it true or false that least squares can be applied to solve for coefficients
a, b in the equation y = a sin(bx) given pairs of points on the line?

Answer: False

Quick Solution: Note that this equation is not linear on a and b, and therein lies
the problem; the existence of sin itself is not an issue since we could perfectly take
pairs of points on an equation like y = a sin(x) + b, and use these to solve for an
optimal a and b. But, the moment we encounter a situation where the equation is
nonlinear on a, b, the problem can no longer be tackled with least squares.

Therefore, since both a and b are describing the sine wave, creating a nonlinear
relationship, we would not be able to construct a linear least squares setup for this
problem given what we know.

z Problem: Assume the following scenario: we have some data (height, weight, age,
white blood cell count) for each patient in a group. We want to use this sample
data to generate a function of the form A~x =~b in order to predict white blood cell
counts for a larger group of patients. What information will populate A?

Answer: height, weight, and age

Quick Solution: This situation follows the patterns for the scenarios we’ve seen
before; if the predictor variable is the white blood cell count, then our goal is
to find out how to weigh the other information (height, weight, age) in order to
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best approximate the blood cell count. These variables (which we can treat as the
inputs to our function) form the columns of A, while ~x contains the associated
weights and~b contains the predicted variable, the blood cell counts. The function
itself could be a very complicated function of the inputs, but it must be linear in
the unknowns (weights, xi) to be solvable using least squares.141 141 Not necessary for the problem at all, but

why might a hospital want to do this? Well,
blood tests are expensive and time-consuming!
Measuring height, weight, and age is far
easier relatively, so if they can reasonably
approximate white blood cell counts for a
patient given the easier-to-collect info, that
would be quite helpful and efficient.

z Problem: Is it true or false that if ~x = projcol(A)~b is the projection of a vector~b onto

the column space of A, that A>
(
~b−~x

)
=~0?

Answer: True

Quick Solution: We know that ~x lies in col(A), whereas~b doesn’t necessarily.
This means that (just as we did in the vector projection derivation in fig. 95 in the
previous chapter and fig. 104 in this chapter) we can isolate the component of~b that
is orthogonal to col(A) as~b−~x. Note that we use perpendicular projections, so if
this leftover component (call it~b⊥) is orthogonal to col(A), it is also orthogonal to
each of the individual column vectors of A (which each lie in the column space).

Therefore, if we decompose A>
(
~b−~x

)
into each row i’s equation as ~ai

>
(
~b−~x

)
,

the result will be zero for all rows (and the resulting vector is therefore ~0).142 142 Note that ~ai is a column vector in A, so its
transpose is a row-vector in A>.Similar logic was applied in deriving the least squares equation in the relevant

information section above, but in the other direction (composing A> from rows
rather than decomposing it into rows).

Long Solution: Some other insights: It is important to recognize that~b is only in
the null-space of A>, since it is orthogonal to every column in A. ~b does not belong
to the null-space of A (these matrices have different null-spaces!) This becomes
especially clear when we consider that these matrices have different dimensions,
and therefore the dimensions of their null-spaces must be different (we can invoke
the Rank-Nullity theorem eq. (16), since rank(A) = rank(

(
A>
)
)).

We can also now interpret the null-space in a slightly different way; if ~x is in
null(A) then A~x = 0 by definition. Also, ~x is orthogonal to each row ~ai

> of A.
null(A) therefore is comprised of all vectors that are orthogonal to every row in
A (every column in A>).

z Problem: Is it true or false that the projection of~b onto a set of vectors {a1, a2, . . . , ak}
= 〈

~b,~a1〉
〈~a1,~a1〉

~a1 +
〈~b,~a2〉
〈~a2,~a2〉

~a2 + · · ·+
〈~b,~ak〉
〈~ak ,~ak〉

~ak?

Answer: False

Quick Solution: If {a1, a2, . . . , ak} are not orthogonal, then adding the vector pro-
jections could lead to double-counting of overlapping components (see example in
the long solution). We would end up arriving at an incorrect projection, unless
we first found an orthogonal basis for span({a1, a2, . . . , ak} and then computed the
vector projections onto those orthogonal vectors.

Long Solution: In this case, we have no information about the set of vectors
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{a1, a2, . . . , ak}, specifically about their orthogonality. If the vectors happen to all
be mutually orthogonal, then the statement would be true, because each individual
vector projection term would be in a distinct direction; they can be added to yield
the overall projection without "cross-contamination" across directions. Here, there
might be overlaps between the terms corresponding to ~a1 and ~a2, for example,
leading to an incorrect result. Consider the simple case of the projection of a

vector~b onto the set of vectors

{[
1
2

]
,

[
2
4

]}
. These are linearly dependent, so the

projections onto them are the same; proj~a1
~b = proj~a2

~b. 143 Adding the projections 143 If this is unclear, see the previous chapter’s
relevant information section, or the very
last problem of the previous chapter for a
more focused treatment of this idea.

here would be double-counting!

To solve this issue, we would need to take the set of vectors {a1, a2, . . . , ak}
and find an orthogonal basis for their span, which can be done using an iterative
procedure like Gram-Schmidt orthogonalization (out of scope in Su20). Again,
anything out-of-scope or not covered in class notes may not be valid on exams.

z Problem: Is it true or false that for an arbitrary cost (error) function, the error
vector ~e corresponding to the optimal approximation of~b onto some col(A) will
be orthogonal to col(A)? That is, is ~e ⊥ col(A) always?

Answer: False

Quick Solution: If we used the standard definition of cost = ‖~e‖, then indeed,
just as we have experienced with least squares, ~e will be orthogonal to col(A).
However, cost functions can be quite complex,144 and not all of them have the 144 see long solution for an explanation of

cost functions and more context.guarantee that ~e ⊥ col(A). This question didn’t specify a cost-function, so we
cannot assume anything about how to solve the system.

Long Solution: Let’s take a moment (2 paragraphs) to clarify the concept of a
cost function, and how this connects to the terminology we know.

A cost function takes in an input (or several) and outputs a value, and this
magnitude of this value represents the degree of error in our approximation. In
the case of least squares, the cost function is the norm operation; it takes the error
vector as the input and outputs the norm as a number. Why do we need a cost
function at all? It’s a convenient metric to abstract complex details about the actual
error into a single value; otherwise, given error vectors [1, 2], and [0, 3], how can
we quantify which is better? What if the error is represented as a non-vector-like
object? The cost function takes care of these calculations.

Different applications may warrant different cost functions; for example, sup-
pose that for some nuanced situation, given an error vector ~e, having any error
value ei > 5 is catastrophic; for any such point we will add e4

i rather than e2
i the

square when computing the modified "norm" of ~e. Then, ~e1 =
[

5
5
]

evaluates to a
cost of

√
52 + 52 = 7.07 than an error vector of ~e2 =

[
6
0
]

with cost
√

64 + 02 = 36.
The standard norm operation would lean in favor of ~e2 (with cost 6) instead of ~e2

(with cost 7.07). We use cost functions to represent quantities to minimize; there
exists another category called reward functions which we want to maximize. The

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
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core concept of optimizing (minimizing or maximizing) a single output value is
the same.

Now, for the question: if we used the standard definition of an error vector’s
norm as our cost function, then as we have seen with least squares, the error~e will
be orthogonal to col(A). However, consider a cost function of the form cost(~e)
= |e1|+ |e2|+ · · ·+ |en|; this does not have the guarantee of orthogonality. Or,
consider a simpler (but perhaps useless?) cost function that always outputs 16;
this also will not have such properties.

While it isn’t in scope to solve for any arbitrary cost function, it is worth
knowing what exactly the least squares process is minimizing, and how to compute
a basic cost function’s output value given its definition and inputs. The next
question is an example of a computation we can perform knowing the specific
cost function.

z Problem: Given the system of equations below, and the cost function c(x) below
that, find the optimal approximation ~x to solve the system.{

α1x = β1

α2x = β2

c(x) = 2(β1 − α1~x)2 + (β2 − α2~x)2

Answer: ~x = 2α1β1+a2β2
2α2

1+α2
2

Long Solution: This question deals with a concept that we haven’t yet seen (in
this book); a calculus-based approach to minimize a cost function by differentiating
the expression with respect to the variable of interest (here, ~x) and setting that
equal to 0.

In least squares, the cost function is different than the one given here; we take
the norm of the error vector and that gives us the representation of the cost, which
gives a measure of how close our model’s predictions are to the data. Calculating
this error vector requires that we already have the optimal vector ~x, since~e =~b−A~x.
In least squares, we can solve for the optimal ~x using eq. (58). But here, the cost
function has been differently defined, and we haven’t derived a formula that gives
us ~x directly. But, the underlying concept is the same; to find the minimum value
of a function, we need to differentiate it and solve for the value of x that makes it
zero. So:

d
dx

c(x) =
d

dx

(
2
(

β2
1 − 2α1β1~x + α2

1~x
2
)
+
(

β2
2 + 2α2β2~x + α2

2~x
2
))

=
d

dx

(
4β2

1 − 4α1b1~x + α2
1~x

2 + β2
2 + 2α2β2~x + α2

2~x
2
)

=
(

4α1β1 + 2α2
1~x + 2α2β2 + 2α2

2~x
)

=
(

4α2
1 + 2α2

2

)
~x− 4α1β1 − 2α2β2
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Setting this = 0, solving for ~x:

0 =
(

4α2
1 + 2α2

2

)
~x− 4α1β1 − 2α2β2

4α1β1 + 2α2β2 =
(

4α2
1 + 2α2

2

)
~x

4α1β1 + 2α2β2

4α2
1 + 2α2

2
= ~x

2α1β1 + α2β2

α2
1 + α2

2
= ~x

And we have our expression for ~x in the last row!


	I Introductory Content
	Introduction
	Conventions
	Colors
	Font Styles
	Other Conventions/Shorthands


	II Online Practice Sets
	Practice Set 0: Systems of Equations and Gaussian Elimination
	Relevant Equations/Information
	Problems

	Practice Set 1: Matrix Operations and Linear Dependence
	Relevant Equations/Information:
	Problems

	Practice Set 2: State Transition Matrices and Inverses
	Relevant Equations/Information
	Problems

	Practice Set 3: Vector Spaces
	Relevant Equations/Information
	Problems

	Practice Set 4A: Page Rank, Eigenvalues and Eigenvectors
	Relevant Equations/Information
	Problems

	Practice Set 4B: Change of Basis
	Relevant Equations/Information
	Problems

	Practice Set 5: Introduction to Circuit Analysis
	Relevant Equations/Information
	Problems

	Practice Set 6: Circuit Analysis, Resistive Modeling and Power
	Relevant Equations/Information
	Problems

	Practice Set 7: Thevenin and Norton Equivalence
	Relevant Equations/Information
	Problems

	Practice Set 8: Capacitors
	Relevant Equations/Information
	Problems

	Practice Set 9: Op-Amps and Golden Rules
	Relevant Equations/Information
	Problems

	Practice Set 10: Locationing and Trilateration
	Relevant Equations/Information
	Problems

	Practice Set 11: Least Squares
	Relevant Equations/Information
	Problems



