1. Identifying a Subspace: Proof

Is the set
\[V = \left\{ \vec{v} \mid \vec{v} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{where } c, d \in \mathbb{R} \right\} \]
a subspace of \(\mathbb{R}^3 \)? Why or why not?

Answer:
Yes, \(V \) is a subspace of \(\mathbb{R}^3 \). We will prove this by using the definition of a subspace.

First of all, note that \(V \) is a subset of \(\mathbb{R}^3 \) – all elements in \(V \) are of the form \(\begin{bmatrix} c + d \\ c \\ c + d \end{bmatrix} \), which is a 3-dimensional real vector.

Now, consider two elements \(\vec{v}_1, \vec{v}_2 \in V \) and \(\alpha \in \mathbb{R} \).

This means that there exists \(c_1, d_1 \in \mathbb{R} \), such that \(\vec{v}_1 = c_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + d_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \). Similarly, there exists \(c_2, d_2 \in \mathbb{R} \), such that \(\vec{v}_2 = c_2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + d_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \).

Now, we can see that
\[\vec{v}_1 + \vec{v}_2 = (c_1 + c_2) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + (d_1 + d_2) \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \]
so \(\vec{v}_1 + \vec{v}_2 \in V \).

Also,
\[\alpha \vec{v}_1 = (\alpha c_1) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + (\alpha d_1) \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \]
so \(\alpha \vec{v}_1 \in V \).

Furthermore, we observe that the zero vector is contained in \(V \), when we set \(c = 0 \) and \(d = 0 \).

We have thus identified \(V \) as a subset of \(\mathbb{R}^3 \), shown both of the no escape (closure) properties (closure under vector addition and closure under scalar multiplication), as well as the existence of a zero vector, so \(V \) is a subspace of \(\mathbb{R}^3 \).

It’s important to note that satisfying the subset property and the two forms of closure additionally implies that subspace \(V \) also satisfies the axioms of a vector space, and therefore is also a vector space.
2. Exploring Column Spaces and Null Spaces

- The **column space** is the span of the column vectors of the matrix.
- The **null space** is the set of input vectors that when multiplied with the matrix result in the zero vector.

For the following matrices, answer the following questions:

i. What is the column space of A? What is its dimension?
ii. What is the null space of A? What is its dimension?
iii. Are the column spaces of the row reduced matrix A and the original matrix A the same?
iv. Do the columns of A span \mathbb{R}^2? Do they form a basis for \mathbb{R}^2? Why or why not?

(a) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

Answer:
- Column space: span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$
- Null space: span $\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

The matrix is already row reduced. The column spaces of the row reduced matrix and the original matrix are the same. The column space does not span \mathbb{R}^2 and thus are not a basis for \mathbb{R}^2.

(b) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

Answer:
- Column space: span $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$
- Null space: span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

The two column spaces are not the same. Not a basis for \mathbb{R}^2.

(c) $\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$

Answer:
- Column space: \mathbb{R}^2
- Null space: span $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$
The two column spaces are the same as the column span \mathbb{R}^2, since they are two independent vectors. This is a basis for \mathbb{R}^2.

(d) \[
\begin{bmatrix}
-2 & 4 \\
3 & -6
\end{bmatrix}
\]

Answer:

Column space: span \{ \begin{bmatrix} 1 \\ -\frac{1}{3} \end{bmatrix} \}

Null space: span \{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \}

The two column spaces are not the same. We can also see that one of the columns is a scaled version of the other, and therefore, they are linearly dependent vectors.
Not a basis for \mathbb{R}^2.

(e) \[
\begin{bmatrix}
1 & -1 & -2 & -4 \\
1 & 1 & 3 & -3
\end{bmatrix}
\]

Answer:

i. The columnspace of the columns is \mathbb{R}^2. The columns of A do not form a basis for \mathbb{R}^2. This is because the columns of A are linearly dependent.

ii. The following algorithm can be used to solve for the null space of a matrix. The procedure is essentially solving the matrix-vector equation $Ax = 0$ by performing Gaussian elimination on A. We start by performing Gaussian elimination on matrix A to get the matrix into upper-triangular form.

\[
\begin{bmatrix}
1 & -1 & -2 & -4 \\
1 & 1 & 3 & -3
\end{bmatrix} \sim \begin{bmatrix}
1 & -1 & -2 & -4 \\
0 & 2 & 5 & 1
\end{bmatrix} \\
\sim \begin{bmatrix}
1 & -1 & -2 & -4 \\
0 & 1 & \frac{5}{2} & \frac{1}{2}
\end{bmatrix} \\
\sim \begin{bmatrix}
1 & 0 & \frac{1}{2} & -\frac{7}{2} \\
0 & 1 & \frac{5}{2} & \frac{1}{2}
\end{bmatrix} \text{ reduced row echelon form}
\]

\[
x_1 + \frac{1}{2}x_3 - \frac{7}{2}x_4 = 0 \\
x_2 + \frac{5}{2}x_3 + \frac{1}{2}x_4 = 0 \\
x_3 \text{ is free and } x_4 \text{ is free}
\]
Now let $x_3 = s$ and $x_4 = t$. Then we have:

\[
\begin{align*}
x_1 + \frac{1}{2}s - \frac{7}{2}t &= 0 \\
x_2 + \frac{5}{2}s + \frac{1}{2}t &= 0
\end{align*}
\]

Now writing all the unknowns (x_1, x_2, x_3, x_4) in terms of the dummy variables:

\[
\begin{align*}
x_1 &= -\frac{1}{2}s + \frac{7}{2}t \\
x_2 &= -\frac{5}{2}s - \frac{1}{2}t \\
x_3 &= s \\
x_4 &= t
\end{align*}
\]

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} = \begin{bmatrix}
-\frac{1}{2}s + \frac{7}{2}t \\
-\frac{5}{2}s - \frac{1}{2}t \\
s \\
t
\end{bmatrix} = \begin{bmatrix}
-\frac{1}{2}s \\
-\frac{5}{2}s \\
s \\
0
\end{bmatrix} + \begin{bmatrix}
\frac{7}{2}t \\
-\frac{1}{2}t \\
0 \\
t
\end{bmatrix} = s \begin{bmatrix}
-\frac{1}{2} \\
-\frac{5}{2} \\
1 \\
0
\end{bmatrix} + t \begin{bmatrix}
\frac{7}{2} \\
-\frac{1}{2} \\
0 \\
1
\end{bmatrix}
\]

So every vector in the nullspace of A can be written as follows:

$\text{Nullspace}(A) = s \begin{bmatrix}
-\frac{1}{2} \\
-\frac{5}{2} \\
1 \\
0
\end{bmatrix} + t \begin{bmatrix}
\frac{7}{2} \\
-\frac{1}{2} \\
0 \\
1
\end{bmatrix}$

Therefore the nullspace of A is

$\text{span} \left\{ \begin{bmatrix}
-\frac{1}{2} \\
-\frac{5}{2} \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
\frac{7}{2} \\
-\frac{1}{2} \\
0 \\
1
\end{bmatrix} \right\}$

A has a 2-dimensional null space.

iii. In this case, the column space of the row reduced matrix is also \mathbb{R}^2, but this need not be true in general.

iv. No, the columns of A do not form a basis for \mathbb{R}^2.