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EECS 16A Designing Information Devices and Systems I
Fall 2020 Discussion 5B

1. Steady and Unsteady States

(a) You’re given the matrix M:

M =

1
2

1
2 −1

2
0 1 −2
0 0 2


Which generates the next state of a physical system from its previous state: ~x[k+1] = M~x[k]. (~x could
describe either people or water.) Find the eigenspaces associated with the following eigenvalues:

i. span(~v1), associated with λ1 = 1
ii. span(~v2), associated with λ2 = 2

iii. span(~v3), associated with λ3 =
1
2

Answer:
i. λ = 1:  M− I ~0

=

 −1
2

1
2 −1

2 0
0 0 −2 0
0 0 1 0

 G.E.→

 1 −1 0 0
0 0 1 0
0 0 0 0



~v1 = α

1
1
0

 ,α ∈ R

ii. λ = 2  M−2I ~0

=

 −3
2

1
2 −1

2 0
0 −1 −2 0
0 0 0 0

 G.E.→

 1 0 1 0
0 1 2 0
0 0 0 0



~v2 = β

−1
−2
1

 ,β ∈ R

iii. λ = 1
2  M− 1

2 I ~0

=

 0 1
2 −1

2 0
0 1

2 −2 0
0 0 3

2 0

 G.E.→

 0 1 0 0
0 0 1 0
0 0 0 0



~v3 = γ

1
0
0

 ,γ ∈ R
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(b) Define ~x = α~v1 + β~v2 + γ~v3, a linear combination of the eigenvectors. For each of the cases in the
table, determine if

lim
n→∞

Mn~x

converges. If it does, what does it converge to?

α β γ Converges? limn→∞ Mn~x
0 0 6= 0
0 6= 0 0
0 6= 0 6= 0
6= 0 0 0
6= 0 0 6= 0
6= 0 6= 0 0
6= 0 6= 0 6= 0

Answer:

Mn~x = Mn(α~v1 +β~v2 + γ~v3)

= αMn~v1 +βMn~v2 + γMn~v3

= 1n
α~v1 +2n

β~v2 +

(
1
2

)n

γ~v3

α β γ Converges? limn→∞ Mn~x
0 0 6= 0 Yes ~0
0 6= 0 0 No -
0 6= 0 6= 0 No -
6= 0 0 0 Yes α~v1

6= 0 0 6= 0 Yes α~v1

6= 0 6= 0 0 No -
6= 0 6= 0 6= 0 No -

2. Eigenvalues and Special Matrices – Visualization
As seen earlier, an eigenvector~v belonging to a square matrix A is a nonzero vector that satisfies

A~v = λ~v

where λ is a a scalar known as the eigenvalue corresponding to eigenvector ~v. Rather than mechanically
compute the eigenvalues and eigenvectors, answer each part here by reasoning about the matrix at hand.

(a) Does the identity matrix in Rn have any eigenvalues λ ∈R? What are the corresponding eigenvectors?
Answer: Multiplying the identity matrix with any vector in Rn produces the same vector, that is,
I~x =~x = 1 ·~x. Therefore, λ = 1. Since~x can be any vector in Rn, the corresponding eigenvectors are
all vectors in Rn.

(b) Does a diagonal matrix


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn

 in Rn have any eigenvalues λ ∈ R? What are the

corresponding eigenvectors?
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Answer: Since the matrix is diagonal, multiplying the diagonal matrix with any standard basis vector
~ei produces di~ei, that is, D~ei = di~ei. Therefore, the eigenvalues are the diagonal entries di of D, and the
corresponding eigenvector associated with λ = di is the standard basis vector~ei.

(c) Conceptually, does a rotation matrix in R2 by angle θ have any eigenvalues λ ∈ R? For which angles
is this the case?
Answer: In a conceptual sense, there are three cases:

Rotation by 0°: (more accurately, any integer multiple of 360°), which yields a rotation matrix R= I:
This will have one eigenvalue of +1 because it doesn’t affect any vector (R~x =~x). The eigenspace
associated with it is R2.

Rotation by 180°: (more accurately, any angle of 180°+n ·360° for integer n), which yields a rota-
tion matrix R =−I: This will have one eigenvalue of−1 because it “flips” any vector (R~x =−~x).
The eigenspace associated with it is R2.

Any other rotation: there aren’t any real eigenvalues. The reason is, if there were any real eigenvalue
λ ∈ R for a non-trivial rotation matrix, it means that we can get R~x = λ~x for some~x 6=~0, which
means that by rotating a vector, we scaled it. This is a contradiction (again, unless R = I). Refer
to Figure 1 for a visualization.

~x

α

M
~x
6=

λ
~x

θ

Figure 1: Rotation will never scale any non-zero vector (by a real number) unless it is rotation by an integer
multiple of 360° (identity matrix) or the rotation angle is θ = 180°+n ·360° for any integer n (−I).

(d) Now let us mechanically compute the eigenvalues of the rotation matrix in R2. Does it agree with our
findings above? As a refresher, the rotation matrix R has the following form:

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
Answer: Using our known determinant formula for 2x2 matrices det(A) = ad−bc we can compute
the characteristic polynomial

det(R−λ I) = det
[

cos(θ)−λ −sin(θ)
sin(θ) cos(θ)−λ

]
= cos(θ)2 + sin(θ)2−2cos(θ)λ +λ

2 ≡ 0
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From here we can first simplify 1 = cos(θ)2 + sin(θ)2 and then use the quadratic formula to attain the
two possible λ values.

λ = cos(θ)±
√

cos(θ)2−1 = cos(θ)± i
√

1− cos(θ)2 = cos(θ)± i
√

sin(θ)2

In exponential phase notation we can write the two eigenvalues more concisely: λ = e±iθ

(e) Does the reflection matrix T across the x-axis in R2×2 have any eigenvalues λ ∈ R?

T =

[
1 0
0 −1

]
Answer: Yes, both +1 and −1. Mechanically, we could go through the methods we have learned
for attaining a characteristic polynomial from det(T −λ I) = (1−λ )(−1−λ )− (0)(0) and recalling
our eigenvalues are the roots of this polynomial (the values where this polynomial is zero). This works
because matrix T −λ I only has a nonempty null space when its determinant is zero!

det(T −λ I) = λ
2−1≡ 0 → λ =±1

Conceptually, we can reason that a vector along the x-axis will be unaffected by T (in this case
λ =+1), where as a vector along the y-axis gets perfectly flipped by T (in this case λ =−1)

NOTE: A 2×2 reflection matrix always has λ =±1, REGARDLESS of the axis of reflection. Why?
Reflecting any vector that is on the reflection axis will not affect it (eigenvalue +1). Reflecting any
vector orthogonal (perpendicular) to the reflection axis will just “flip it/negate it” (eigenvalue −1). In
other words, the set of vectors that lie along the axis of reflection is the eigenspace associated with the
eigenvalue +1 and the set of vectors orthogonal to the axis of reflection is the eigenspace associated
with the eigenvalue −1.

(f) If a matrix M has an eigenvalue λ = 0, what does this say about its null space? What does this say
about the solutions of the system of linear equations M~x =~b?
Answer: N(A) is not just~0 as we have some ~v 6=~0 satisfying A~v = λ~v. Another way we can state
this is that dim(N(A))> 0.
Thus we can imagine if M~x =~b has a solution then M(~x+~v) =~b also solves the system, hence there
are infinite solutions. Yet we also know that a nonzero null space means M has linearly dependent
columns, so the vector~b could lie outside of this span in which case there is no solution.

In summary, there are either infinite or no solutions to the system of equations M~x =~b

(g) (Practice) Does the matrix
[

1 1
0 0

]
have any eigenvalues λ ∈ R? What are the corresponding eigen-

vectors?
Answer:
Note that the matrix has linearly dependent columns. Therefore, according to part (f), one eigenvalue
is λ = 0. The corresponding eigenvector, which is equivalent to the basis vector for the null space, is[

1
−1

]
. The other eigenvalue is, by inspection, λ = 1 with the corresponding eigenvector

[
1
0

]
because[

1 1
0 0

][
1
0

]
=

[
1
0

]
.
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