1. **(Optional) The Romulan Ruse** While scanning parts of the galaxy for alien civilization, the starship USS Enterprise NC-1701D encounters a Romulan starship that is known for advanced cloaking devices.

(a) **Concept: Matrix Transformations**

The Romulan illusion technology causes a point \((x_0, y_0)\) to transform or map to \((u_0, v_0)\). Similarly, \((x_1, y_1)\) is mapped to \((u_1, v_1)\). Figure 1 and Table 1 show two points on a Romulan ship and the corresponding mapped points.

![Figure 1: Figure for part (a)](image)

<table>
<thead>
<tr>
<th>Original Point</th>
<th>Mapped Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_0, y_0) = (500, 500))</td>
<td>((u_0, v_0) = (500, 1500))</td>
</tr>
<tr>
<td>((x_1, y_1) = (1000, 500))</td>
<td>((u_1, v_1) = (1000, 1500))</td>
</tr>
</tbody>
</table>

Table 1: Original and Mapped Points

Find a transformation matrix \(A_0\) such that

\[
\begin{bmatrix}
 u_0 \\
 v_0
\end{bmatrix} = A_0 \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}, \text{ and } \begin{bmatrix}
 u_1 \\
 v_1
\end{bmatrix} = A_0 \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}.
\]

Answer: Let us assume \(A_0 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\). Hence for point \((x_0, y_0)\), we have:

\[
\begin{bmatrix}
 500 \\
 1500
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 500 \\ 500 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 \\
 3
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\
 1
\end{bmatrix}
\]

i.e.

\[a + b = 1; \quad (1)\]
\[c + d = 3. \quad (2)\]

Similarly, for point \((x_1, y_1)\), we have

\[
\begin{bmatrix}
 1000 \\
 1500
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1000 \\ 500 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\
 3
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 \\
 1
\end{bmatrix}
\]

UCB EECS 16A, Fall 2020, Discussion 6A, All Rights Reserved. This may not be publicly shared without explicit permission.
i.e.

\[2a + b = 2; \]
\[2c + d = 3. \]

Solving Equations (1) and (3) for \(a \) and \(b \), we have:

\[a = 1, \text{ and } b = 0. \]

Solving Equations (2) and (4) for \(c \) and \(d \), we have:

\[c = 0, \text{ and } d = 3. \]

Substituting values of \(a, b, c, \) and \(d \), we have

\[\mathbf{A}_0 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}. \]

Additionally, it can be observed from Figure 1 that the mapped vectors are derived by scaling the original vectors by 3 in the \(y \)-direction and by unity in the \(x \)-direction. Using Figure 1 and Table 1, we can write

\[u_0 = x_0, \text{ and } v_0 = 3y_0, \]

and

\[u_1 = x_1, \text{ and } v_1 = 3y_1. \]

Writing equations 5 and 6 in matrix-vector product form, we have

\[\begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}; \]

\[\begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}. \]

Hence

\[\mathbf{A}_0 = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}. \]
(b) **Concept: Matrix Transformations**

In this scenario, every point on the Romulan ship \((x_m, y_m)\) is mapped to \((u_m, v_m)\), such that vector \[
\begin{bmatrix}
x_m \\
y_m
\end{bmatrix}
\]
is rotated counterclockwise by 30° and then scaled by 2 in the x- and y-directions. This transformation is shown in Figure 2.

\[
R_{\theta} = \begin{bmatrix}
\cos 30^\circ & -\sin 30^\circ \\
\sin 30^\circ & \cos 30^\circ
\end{bmatrix} = \begin{bmatrix}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{bmatrix}.
\]

Transformation matrix that rotates a vector counterclockwise by 30° and scales by 2 is:

\[
R = 2R_{\theta} = \begin{bmatrix}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{bmatrix}.
\]

Alternatively, the transformation matrix can be written as:

\[
R = \begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix} \begin{bmatrix}
\cos 30^\circ & -\sin 30^\circ \\
\sin 30^\circ & \cos 30^\circ
\end{bmatrix} = \begin{bmatrix}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{bmatrix}.
\]

Table 2: Trigonometric Table

<table>
<thead>
<tr>
<th>θ</th>
<th>sin θ</th>
<th>cos θ</th>
<th>tan θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30°</td>
<td>(\frac{1}{2})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{\sqrt{3}})</td>
</tr>
<tr>
<td>45°</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>(\frac{\sqrt{2}}{2})</td>
<td>1</td>
</tr>
<tr>
<td>60°</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\sqrt{3})</td>
</tr>
<tr>
<td>90°</td>
<td>1</td>
<td>0</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>

Figure 2: Figure for part (b)
The Romulan ship has launched a probe into space and the Enterprise is trying to destroy the probe by firing a photon torpedo along a straight line from point \((0, 0)\) towards the probe.

(c) **Concept: Gaussian Elimination, Systems of Equations**
The Romulan generals found a clever way to hide the probe by transforming (mapping) its position with a *cloaking* (transformation) matrix \(A_p:\)

\[
A_p = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}.
\]

They positioned the probe at \((x_p, y_p)\) so that it maps to \((u_p, v_p) = (0, 0)\), where \[
\begin{bmatrix} u_p \\ v_p \end{bmatrix} = A_p \begin{bmatrix} x_p \\ y_p \end{bmatrix}.
\]

This scenario is shown in Figure 3. The initial position of the torpedo is \((0, 0)\) and the torpedo cannot be fired on its initial position! Impressive trick indeed!

Find the possible positions of the probe \((x_p, y_p)\) **so that** \((u_p, v_p) = (0, 0)\).

Answer: We need to solve for

\[
\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

So essentially we need to find the nullspace of the matrix \(A_p\). Using Gaussian Elimination on the augmented matrix, we have:

\[
\begin{bmatrix} 1 & 3 & | & 0 \\ 2 & 6 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \Rightarrow x_p + 3y_p = 0 \Rightarrow x_p = -3y_p.
\]

The solution is \(\alpha \begin{bmatrix} -3 \\ 1 \end{bmatrix}\), where \(\alpha \in \mathbb{R}\). So \(\begin{bmatrix} x_p \\ y_p \end{bmatrix}\) should be in the span of \(\begin{bmatrix} -3 \\ 1 \end{bmatrix}\). Alternatively, any point \((x_p, y_p)\) that is on the line: \(x = -3y\), would represent all possible positions of the probe.
(d) **Concept: Eigenspaces/Eigenvectors/Eigenvalues**

It turns out the Romulan engineers were not as smart the Enterprise engineers. Their calculations did not work out and they positioned the probe at \((x_q, y_q)\) such that the *cloaking* (transformation) matrix, \(A_p\), mapped it to \((u_q, v_q)\), where

\[
\begin{bmatrix}
 u_q \\
 v_q
\end{bmatrix} = A_p \begin{bmatrix}
 x_q \\
 y_q
\end{bmatrix}, \text{ and } A_p = \begin{bmatrix}
 1 & 3 \\
 2 & 6
\end{bmatrix}.
\]

As a result, the torpedo while traveling along a straight line from \((0,0)\) to \((u_q, v_q)\), hit the probe at \((x_q, y_q)\) on the way!

The scenario is shown in Figure 4. For the torpedo to hit the probe, we must have \[
\begin{bmatrix}
 u_q \\
 v_q
\end{bmatrix} = \lambda \begin{bmatrix}
 x_q \\
 y_q
\end{bmatrix}, \text{ where } \lambda \text{ is a real number.}
\]

Find the possible positions of the probe \((x_q, y_q)\) so that \((u_q, v_q) = (\lambda x_q, \lambda y_q)\). Remember that the torpedo cannot be fired on its initial position \((0,0)\).

Answer: We need to solve for \(A_p \begin{bmatrix}
 x_q \\
 y_q
\end{bmatrix} = \lambda \begin{bmatrix}
 x_q \\
 y_q
\end{bmatrix}\), i.e. we need to find the eigenvectors of \(A_p\). Let’s start by finding the eigenvalues:

\[
\begin{align*}
\det \left(\begin{bmatrix}
 1 & 3 \\
 2 & 6
\end{bmatrix} - \lambda \begin{bmatrix}
 0 & 0 \\
 0 & \lambda
\end{bmatrix} \right) &= 0 \\
\det \left(\begin{bmatrix}
 1 - \lambda & 3 \\
 2 & 6 - \lambda
\end{bmatrix} \right) &= 0
\end{align*}
\]

So we have the characteristic polynomial:

\[(1 - \lambda)(6 - \lambda) - (3)(2) = 0 \Rightarrow \lambda = 0, 7\]

Using \(\lambda = 0\), we have: \[
\begin{bmatrix}
 1 & 3 \\
 2 & 6
\end{bmatrix} \begin{bmatrix}
 x_q \\
 y_q
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0
\end{bmatrix}, \text{ which will map } (x_q, y_q) \text{ to the original position of the torpedo. The torpedo cannot be fired on its original position. So } \lambda = 0 \text{ will not provide a valid solution.}
\]

Using \(\lambda = 7\), we have:

\[
(A_p - 7I) \begin{bmatrix}
 x_q \\
 y_q
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0
\end{bmatrix} \Rightarrow \left(\begin{bmatrix}
 1 & 3 \\
 2 & 6
\end{bmatrix} - 7 \begin{bmatrix}
 1 & 0 \\
 0 & 1
\end{bmatrix} \right) \begin{bmatrix}
 x_q \\
 y_q
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0
\end{bmatrix} \Rightarrow \begin{bmatrix}
 -6 & 3 \\
 2 & -1
\end{bmatrix} \begin{bmatrix}
 x_q \\
 y_q
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0
\end{bmatrix}
\]

Using Gaussian Elimination on the augmented matrix form, we have

\[
\begin{bmatrix}
 -6 & 3 & 0 \\
 2 & -1 & 0
\end{bmatrix} \Rightarrow \begin{bmatrix}
 2 & -1 & 0 \\
 0 & 0 & 0
\end{bmatrix} \Rightarrow 2x_q - y_q = 0 \Rightarrow y_q = 2x_q
\]

The solution is \(x \begin{bmatrix}
 1 \\
 2
\end{bmatrix}\), where \(x \in \mathbb{R} : x \neq 0\). So \(\begin{bmatrix}
 x_q \\
 y_q
\end{bmatrix}\) should be in the span of \(\begin{bmatrix}
 1 \\
 2
\end{bmatrix}\).

Alternatively, any point \((x_q, y_q)\) that is on the line: \(y = 2x\), excluding \((0,0)\), would represent all possible positions of the probe.
2. (Optional) Proof

Concept: Null Spaces, Invertibility

Consider a square matrix A. Prove that if A has a non-trivial nullspace, i.e. if the nullspace of A contains more than just $\vec{0}$, then matrix A is not invertible.

Answer: We are given that the nullspace of A contains a vector other than $\vec{0}$. Let such a vector be $\vec{y} \neq \vec{0}$, where $A\vec{y} = \vec{0}$. Imagine, for the sake of contradiction, that A had an inverse A^{-1}. Then we find that

$$A\vec{y} = \vec{0}$$

$$\implies (A^{-1}A)\vec{y} = A^{-1}\vec{0}$$

$$\implies \vec{y} = \vec{0},$$

since by the definition of an inverse, $A^{-1}A = I$.

But we said that $\vec{y} \neq \vec{0}$, so this is a contradiction! Therefore, our original hypothesis must have been false, so A cannot have an inverse.

Thus, the matrix A is not invertible.