1. Inner Product Properties

For this question, we will verify our coordinate definition of the inner product

\[\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n, \quad \text{for any } \vec{x}, \vec{y} \in \mathbb{R}^n \]

indeed satisfies the key properties required for all inner products, but presently for the 2-dimensional case.

Suppose \(\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^2 \) for the following parts:

(a) Show symmetry \(\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle \).

Answer: This is seen by direct expansion:

Let \(x_i, y_i \in \mathbb{R} \), then

\[
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = x_1 \cdot y_1 + x_2 \cdot y_2 \\
= y_1 \cdot x_1 + y_2 \cdot x_2 \\
= \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
\]

(b) Show linearity \(\langle \vec{x}, c \vec{y} + d \vec{z} \rangle = c \langle \vec{x}, \vec{y} \rangle + d \langle \vec{x}, \vec{z} \rangle \), where \(c, d \in \mathbb{R} \) are real numbers.

Answer: This is accomplished through a direct expansion:

\[
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} c y_1 \\ c y_2 \end{bmatrix} + d \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} cy_1 + dz_1 \\ cy_2 + dz_2 \end{bmatrix} \\
= x_1 (cy_1 + dz_1) + x_2 (cy_2 + dz_2) \\
= c (x_1 y_1 + x_2 y_2) + d (x_1 z_1 + x_2 z_2) \\
= c \langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \rangle + d \langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \rangle \\
= c \langle \vec{x}, \vec{y} \rangle + d \langle \vec{x}, \vec{z} \rangle
\]
(c) Show non-negativity \(\langle \vec{x}, \vec{x} \rangle \geq 0 \), with equality if and only if \(\vec{x} = \vec{0} \).

Answer: This part requires just a bit more thought beyond a direct expansion of \(\langle \vec{x}, \vec{x} \rangle \), but we first recognize that this inner product is the definition of the norm (or length) of \(\vec{x} \). So it is at least in intuitive that a length of some vector (squared) cannot be negative:

\[
\langle \vec{x}, \vec{x} \rangle = \langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rangle = x_1^2 + x_2^2
\]

From this result we notice if either \(x_1 \) or \(x_2 \) are nonzero (even negative) values, then the inner product HAS to be positive. The only case in which the inner product \(\langle \vec{x}, \vec{x} \rangle \) is identically zero is when both \(x_1 = 0 \) AND \(x_2 = 0 \), which verifies the final part of the property: \(\langle \vec{x}, \vec{x} \rangle = 0 \) ONLY IF \(\vec{x} = \vec{0} \).

As a bonus, suppose we re-label our vector components \(x_1 = a \) and \(x_2 = b \).

The we see \(\langle \vec{x}, \vec{x} \rangle = c^2 = a^2 + b^2 \), which is the Pythagorean theorem!

This verifies that \(\| \vec{x} \| = \sqrt{\langle \vec{x}, \vec{x} \rangle} = c \) can be geometrically understood as the length of vector \(\vec{x} \).

2. **Geometric Interpretation of the Inner Product**

In this problem, we explore the geometric interpretation of the Euclidean inner product, restricting ourselves to vectors in \(\mathbb{R}^2 \).

Remember that the formula for the inner product of two vectors can be expressed in terms of their magnitudes and the angle between them as follows:

\[
\langle \vec{x}, \vec{y} \rangle = \| \vec{x} \| \| \vec{y} \| \cos \theta
\]

The figure below may be helpful in illustrating this property:

![Geometric Interpretation of the Inner Product](image)

For each sub-part, give an example of any two (nonzero) vectors \(\vec{x}, \vec{y} \in \mathbb{R}^2 \) that satisfy the stated condition and compute their inner product.

UCB EECS 16A, Spring 2022, Discussion 12A, All Rights Reserved. This may not be publicly shared without explicit permission.
(a) Give an example of a pair of parallel vectors (vectors that point in the same direction and have an angle of 0 degrees between them).

Answer: Parallel vectors point in the same direction (have an angle of 0° between them).
This means we must have $\vec{y} = \alpha \vec{x}$ for some $\alpha > 0$.
Having only this condition leaves a lot of freedom.
Let us choose $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{y} = 2 \vec{x} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

$$\langle \vec{x}, \vec{y} \rangle = 1 \cdot 2 + 1 \cdot 2 = 4$$

(b) Give an example of a pair of anti-parallel vectors (vectors that point in opposite directions).

Answer: Anti-parallel vectors point in opposite directions (have an angle of 180° between them).
This means we must have $\vec{y} = \alpha \vec{x}$ again, but now for some negative $\alpha < 0$.
Having only this condition still leaves a lot of freedom.
Let us choose $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and then set $\vec{y} = -2 \vec{x} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$.

$$\langle \vec{x}, \vec{y} \rangle = 1 \cdot -2 + 1 \cdot -2 = -4$$

(c) Give an example of a pair of perpendicular vectors (vectors that have an angle of 90 degrees between them).

Answer: Perpendicular vectors point in 90° directions with respect to each-other.
Most importantly, the Euclidean inner product $\langle \vec{x}, \vec{y} \rangle = 0$ whenever \vec{x}, \vec{y} are perpendicular.

For our example we will fix $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and then leave $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ general.

$$\langle \vec{x}, \vec{y} \rangle = 1 \cdot y_1 + 0 \cdot y_2 = y_1 \equiv 0.$$

Thus we must set $y_1 = 0$, but y_2 can assume any nonzero value!

3. **Correlation**

(a) You are given the following two signals:
Sketch the linear cross-correlation of signal 1 with signal 2, that is find: $\text{corr}(\vec{s}_1, \vec{s}_2)[n]$ for $n = 0, 1, \ldots, 4$. Do not assume the signals are periodic.

Answer:

Represent signal 1 as the vector $\vec{s}_1 = [4 \ 2 \ 0 \ 0 \ -2 \ 0 \ 0 \ 0 \ 0]^T$, zero-padded so that we compute only the linear correlation. Similarly, represent signal 2 as the vector $\vec{s}_2 = [-4 \ 8 \ -4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$, where we once again zero pad the vector. Notice that we zero pad the vectors \vec{s}_1 and \vec{s}_2 to represent the signals from $n = 0, 1, \ldots, 8$. This is because we are only interested in calculating the cross-correlation for for $n = 0, 1, \ldots, 4$, therefore we will only need to shift the vector \vec{s}_2 four times.

The cross-correlation between two vectors is defined as follows:

$$\text{corr}(\vec{x}, \vec{y})[k] = \sum_{i=-\infty}^{\infty} \vec{x}[i]\vec{y}[i-k]$$

To compute the cross-correlation $\text{corr}(\vec{s}_1, \vec{s}_2)$, we shift the vector \vec{s}_2 and compute the inner product of the shifted \vec{s}_2 and the vector \vec{s}_1.

$$
\begin{array}{c|cccccccc}
\vec{s}_1 & 4 & -2 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
\vec{s}_2[n] & -4 & 8 & -4 & 0 & 0 & 0 & 0 & 0 & 0 \\
\langle\vec{s}_1, \vec{s}_2[n]\rangle & -16 & +16 & +0 & +0 & +0 & +0 & +0 & +0 & +0 = -32 \\
\vec{s}_1 & 4 & -2 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
\vec{s}_2[n-1] & 0 & -4 & -8 & -4 & 0 & 0 & 0 & 0 & 0 \\
\langle\vec{s}_1, \vec{s}_2[n-1]\rangle & 0 & +8 & +8 & +0 & +0 & +0 & +0 & +0 & +0 = 8 \\
\vec{s}_1 & 4 & -2 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
\vec{s}_2[n-2] & 0 & 0 & -4 & 8 & -4 & 0 & 0 & 0 & 0 \\
\langle\vec{s}_1, \vec{s}_2[n-2]\rangle & 0 & +0 & +0 & +0 & +8 & +0 & +0 & +0 & +0 = 8 \\
\vec{s}_1 & 4 & -2 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
\vec{s}_2[n-3] & 0 & 0 & 0 & -4 & 8 & -4 & 0 & 0 & 0 \\
\langle\vec{s}_1, \vec{s}_2[n-3]\rangle & 0 & +0 & +0 & +0 & +16 & +0 & +0 & +0 & +0 = -16 \\
\vec{s}_1 & 4 & -2 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
\vec{s}_2[n-4] & 0 & 0 & 0 & 0 & -4 & 8 & -4 & 0 & 0 \\
\langle\vec{s}_1, \vec{s}_2[n-4]\rangle & 0 & +0 & +0 & +0 & +8 & +0 & +0 & +0 & +0 = 8
\end{array}
$$
(b) Now the pattern in \vec{s}_1 is repeated three times:

![Sketch of signals](image)

Sketch the linear cross-correlation of signal 1 with signal 2, $\text{corr}(\vec{s}_1, \vec{s}_2)[n]$, for $n = 0, 1, \ldots, 4$.

Answer: Recall that $\text{corr}(\vec{x}, \vec{y})[k] = \sum_{i=-\infty}^{\infty} \vec{x}[i] \vec{y}[i-k]$

As we did in part a) to compute the cross-correlation $\text{corr}(\vec{s}_1, \vec{s}_2)$, we shift the vector \vec{s}_2 and compute the inner product of the shifted \vec{s}_2 and the vector \vec{s}_1. Since we are interested in $\text{corr}(\vec{s}_1, \vec{s}_2)[n]$, for $n = 0, 1, \ldots, 4$, here we have shown the two signals for $n = 0, 1, \ldots, 8$.

<table>
<thead>
<tr>
<th>\vec{s}_1</th>
<th>4</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{s}_2[n]$</td>
<td>-4</td>
<td>8</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\langle \vec{s}_2, \vec{s}_1[n]\rangle$</td>
<td>-16</td>
<td>+16</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
</tr>
</tbody>
</table>

$= -32$

<table>
<thead>
<tr>
<th>\vec{s}_1</th>
<th>4</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{s}_2[n-1]$</td>
<td>0</td>
<td>-4</td>
<td>8</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\langle \vec{s}_2, \vec{s}_1[n-1]\rangle$</td>
<td>0</td>
<td>+8</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
</tr>
</tbody>
</table>

$= 8$

<table>
<thead>
<tr>
<th>\vec{s}_1</th>
<th>4</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{s}_2[n-2]$</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>8</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\langle \vec{s}_2, \vec{s}_1[n-2]\rangle$</td>
<td>0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+8</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
</tr>
</tbody>
</table>

$= 8$

<table>
<thead>
<tr>
<th>\vec{s}_1</th>
<th>4</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{s}_2[n-3]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>8</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\langle \vec{s}_2, \vec{s}_1[n-3]\rangle$</td>
<td>0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>-16</td>
<td>-16</td>
<td>+0</td>
<td>+0</td>
</tr>
</tbody>
</table>

$= -32$

<table>
<thead>
<tr>
<th>\vec{s}_1</th>
<th>4</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
<th>-2</th>
<th>0</th>
<th>0</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{s}_2[n-4]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>8</td>
<td>-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\langle \vec{s}_2, \vec{s}_1[n-4]\rangle$</td>
<td>0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+0</td>
<td>+8</td>
<td>+32</td>
<td>+8</td>
<td>+0</td>
</tr>
</tbody>
</table>

$= 48$
Notice that when \overline{s}_1 is periodic we don’t simply get the result from part a) repeated.