1. Visualizing Span

We are given a point \(\vec{c} \) that we want to get to, but we can only move in two directions: \(\vec{a} \) and \(\vec{b} \). We know that to get to \(\vec{c} \), we can travel along \(\vec{a} \) for some amount \(\alpha \), then change direction, and travel along \(\vec{b} \) for some amount \(\beta \). We want to find these two scalars \(\alpha \) and \(\beta \), such that we reach point \(\vec{c} \). That is, \(\alpha \vec{a} + \beta \vec{b} = \vec{c} \).

![Diagram showing vectors \(\vec{a}, \vec{b}, \vec{c} \)]

(a) First, consider the case where \(\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \) and \(\vec{z} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \). Draw these vectors on a sheet of paper.

(b) We want to find the two scalars \(\alpha \) and \(\beta \), such that by moving \(\alpha \) along \(\vec{x} \) and \(\beta \) along \(\vec{y} \) so that we can reach \(\vec{z} \). Write a system of equations to find \(\alpha \) and \(\beta \) in matrix form.

(c) Solve for \(\alpha, \beta \).

2. Span basics

(a) What is span \(\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\} \)?

(b) Is \(\begin{bmatrix} 5 \\ 5 \\ 0 \end{bmatrix} \) in span \(\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\} \)?

(c) What is a possible choice for \(\vec{v} \) that would make span \(\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \vec{v} \right\} = \mathbb{R}^3 \)?

(d) For what values of \(b_1, b_2, b_3 \) is the following system of linear equations consistent? (“Consistent” means there is at least one solution.)

\[
\begin{bmatrix}
1 & 2 \\
2 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\vec{x} \\
\vec{b}
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}
\]
3. Proofs

Definition: A set of vectors \(\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \} \) is **linearly dependent** if there exists constants \(c_1, c_2, \ldots, c_n \) such that \(\sum_{i=1}^{n} c_i \vec{v}_i = \vec{0} \) and at least one \(c_i \) is non-zero.

This condition intuitively states that it is possible to express any vector from the set in terms of the others.

(a) Suppose for some non-zero vector \(\vec{x} \), \(A \vec{x} = \vec{0} \). Prove that the columns of \(A \) are linearly dependent.

(b) For \(A \in \mathbb{R}^{m \times n} \), suppose there exist two unique vectors \(\vec{x}_1 \) and \(\vec{x}_2 \) that both satisfy \(A \vec{x} = \vec{b} \), that is, \(A \vec{x}_1 = \vec{b} \) and \(A \vec{x}_2 = \vec{b} \). Prove that the columns of \(A \) are linearly dependent.

(c) Let \(A \in \mathbb{R}^{m \times n} \) be a matrix for which there exists a non-zero \(\vec{y} \in \mathbb{R}^n \) such that \(A \vec{y} = \vec{0} \). Let \(\vec{b} \in \mathbb{R}^m \) be some non-zero vector. Show that if there is one solution to the system of equations \(A \vec{x} = \vec{b} \), then there are infinitely many solutions.