1. Mechanical Inverses

For each sub-part below, determine whether or not the inverse of A exists. If it exists, compute the inverse using Gauss-Jordan method.

(a) $A = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$

(b) $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

(c) $A = \begin{bmatrix} 1 & 5 & 3 \\ 2 & -2 & 4 \end{bmatrix}$

(d) $A = \begin{bmatrix} 5 & 5 & 15 \\ 2 & 2 & 4 \\ 1 & 1 & 4 \end{bmatrix}$

2. Identifying a Subspace: Proof

Is the set $V = \left\{ \vec{v} \mid \vec{v} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ where } c, d \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^3? Why/why not?

3. Exploring Column Spaces and Null Spaces

- The column space is the span of the column vectors of the matrix.
- The null space is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:

i. What is the column space of A? What is its dimension?
ii. What is the null space of A? What is its dimension?

iii. Are the column spaces of the row reduced matrix A and the original matrix A the same?

iv. Do the columns of A span \mathbb{R}^2? Do they form a basis for \mathbb{R}^2? Why or why not?

(a) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

(b) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

(c) $\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$

(d) $\begin{bmatrix} -2 & 4 \\ 3 & -6 \end{bmatrix}$

(e) $\begin{bmatrix} 1 & -1 & -2 & -4 \\ 1 & 1 & 3 & -3 \end{bmatrix}$

4. Exploring Dimension, Linear Independence, and Basis

In this problem, we are going to talk about the connections between several concepts we have learned about in linear algebra – linear independence, dimension of a vector space/subspace, and basis.

Let’s consider the vector space \mathbb{R}^k and a set of n vectors $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ in \mathbb{R}^k.

(a) For the first part of the problem, let $k > n$. Can $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ form a basis for \mathbb{R}^k? Why/why not? What conditions would we need?

(b) Let $k = n$. Can $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ form a basis for \mathbb{R}^k? Why/why not? What conditions would we need?

(c) Now, let $k < n$. Can $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ form a basis for \mathbb{R}^k? What vector space could they form a basis for?

Hint: Think about whether the vectors can be linearly independent.