1. Identifying a Subspace: Proof

Is the set

\[V = \left\{ \vec{v} \mid \vec{v} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ where } c, d \in \mathbb{R} \right\} \]

a subspace of \(\mathbb{R}^3 \)? Why or why not?

2. Exploring Column Spaces and Null Spaces

- The column space is the span of the column vectors of the matrix.
- The null space is the set of input vectors that when multiplied with the matrix result in the zero vector.

For the following matrices, answer the following questions:

i. What is the column space of \(A \)? What is its dimension?

ii. What is the null space of \(A \)? What is its dimension?

iii. Are the column spaces of the row reduced matrix \(A \) and the original matrix \(A \) the same?

iv. Do the columns of \(A \) span \(\mathbb{R}^2 \)? Do they form a basis for \(\mathbb{R}^2 \)? Why or why not?

(a) \[
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\]

(b) \[
\begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}
\]
(c) \[
\begin{bmatrix}
1 & 2 \\
-1 & 1
\end{bmatrix}
\]

(d) \[
\begin{bmatrix}
-2 & 4 \\
3 & -6
\end{bmatrix}
\]

(e) \[
\begin{bmatrix}
1 & -1 & -2 & -4 \\
1 & 1 & 3 & -3
\end{bmatrix}
\]