Recall from lecture the way to compute a determinant of any 2×2 matrix is by using the following formula:
\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\]
\[
\det(A) = ad - bc
\]

1. **Mechanical Eigenvalues and Eigenvectors**

 Definition: For some matrix A, the polynomial function of λ, $f(\lambda) = \det(A - \lambda I)$, is known as the *characteristic polynomial* of A.

 Find the eigenvalues (which are the roots of the characteristic polynomial) of each matrix M and their associated eigenvectors. State if the inverse of M exists.

 (a) $M = \begin{bmatrix}
 0 & 1 \\
 -2 & -3
\end{bmatrix}$

 (b) $M = \begin{bmatrix}
 -2 & 4 \\
 -4 & 8
\end{bmatrix}$
2. Steady State Reservoir Levels

We have 3 reservoirs: A, B and C. The pumps system between the reservoirs is depicted in Figure 1.
(a) Write out the transition matrix T representing the pumps system.

(b) You are told that $\lambda_1 = 1$, $\lambda_2 = \frac{-\sqrt{2} - 1}{10}$, $\lambda_3 = \frac{\sqrt{2} - 1}{10}$ are the eigenvalues of T. Find a steady state vector \vec{x}, i.e. a vector such that $T\vec{x} = \vec{x}$.

Figure 1: Reservoir pumps system.