1. Steady and Unsteady States

(a) You’re given the matrix \(M \):

\[
M = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 1 & -2 \\
0 & 0 & 2
\end{bmatrix}
\]

Which generates the next state of a physical system from its previous state: \(\vec{x}[k+1] = M \vec{x}[k] \). Find the eigenspaces associated with the following eigenvalues:

i. span(\(\vec{v}_1 \)), associated with \(\lambda_1 = 1 \)
ii. span(\(\vec{v}_2 \)), associated with \(\lambda_2 = 2 \)
iii. span(\(\vec{v}_3 \)), associated with \(\lambda_3 = \frac{1}{2} \)

(b) Define \(\vec{x} = \alpha \vec{v}_1 + \beta \vec{v}_2 + \gamma \vec{v}_3 \), a linear combination of the eigenvectors. For each of the cases in the table, determine if

\[
\lim_{n \to \infty} M^n \vec{x}
\]

converges. If it does, what does it converge to?

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>Converges?</th>
<th>(\lim_{n \to \infty} M^n \vec{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(\neq 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(\neq 0)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(\neq 0)</td>
<td>(\neq 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\neq 0)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\neq 0)</td>
<td>0</td>
<td>(\neq 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\neq 0)</td>
<td>(\neq 0)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\neq 0)</td>
<td>(\neq 0)</td>
<td>(\neq 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Steady State Reservoir Levels

We have 3 reservoirs: \(A, B \) and \(C \). The pumps system between the reservoirs is depicted in Figure 1.
(a) Write out the transition matrix T representing the pumps system.

(b) You are told that $\lambda_1 = 1$, $\lambda_2 = -\sqrt{2} - 1$, $\lambda_3 = \sqrt{2} - 1$ are the eigenvalues of T. Find a steady state vector \vec{x}, i.e. a vector such that $T\vec{x} = \vec{x}$.

(c) What does the magnitude of the other two eigenvalues λ_2 and λ_3 say about the steady state behavior of their associated eigenvectors?

(d) Assuming that you start the pumps with the water levels of the reservoirs at $A_0 = 129$, $B_0 = 109$, $C_0 = 0$ (in kiloliters), what would be the steady state water levels (in kiloliters) according to the pumps system described above?