1. Least Squares with Orthogonal Columns

(a) Consider a least squares problem of the form

\[\min_{\mathbf{x}} \| \mathbf{b} - \mathbf{A}\mathbf{x} \|_2^2 = \min_{\mathbf{x}} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_2^2 = \min_{\mathbf{x}} \left\| \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} - \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} \right\|_2^2 \]

Let the solution be \(\hat{\mathbf{x}} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} \).

Label the following elements in the diagram below.

\[\text{span}\{\mathbf{a}_1, \mathbf{a}_2\}, \quad \tilde{\mathbf{e}} = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}}, \quad \mathbf{A}\hat{\mathbf{x}}, \quad \mathbf{a}_1\hat{x}_1, \quad \mathbf{a}_2\hat{x}_2, \quad \text{colspace}(\mathbf{A}) \]
(b) We now consider the special case of least squares where the columns of A are orthogonal (illustrated in the figure below). Given that $\tilde{x} = (A^TA)^{-1}A^T\tilde{b}$ and $A\tilde{x} = \text{proj}_A(\tilde{b}) = \hat{x}_1a_1 + \hat{x}_2a_2$, show that

\[
\begin{align*}
\text{proj}_{a_1}(\tilde{b}) &= \hat{x}_1a_1 \\
\text{proj}_{a_2}(\tilde{b}) &= \hat{x}_2a_2
\end{align*}
\]

(c) Compute the least squares solution to

$$
\min_{\tilde{x}} \left\| \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|^2.
$$

2. Building a Classifier

We would like to develop a classifier to classify points based on their distance from the origin.

You are presented with the following data. Each data point $\tilde{d}_i^T = [x_i, y_i]^T$ has the corresponding label $l_i \in \{-1, 1\}$.

(a) You want to build a model to understand the data. You first consider a linear model, i.e. you want to find $\alpha, \beta, \gamma \in \mathbb{R}$ such that $l_i \approx \alpha x_i + \beta y_i + \gamma$.

Set up a least squares problem to solve for α, β, γ. If this problem is solvable, solve it, i.e. find the best values for α, β, γ. If it is not solvable, justify why.
(b) You now consider a model with a quadratic term: \(l_i \approx \alpha x_i + \beta x_i^2 \) with \(\alpha, \beta \in \mathbb{R} \). Read the equation carefully!

Set up a least squares problem to fit the model to the data. If this problem is solvable, solve it, i.e., find the best values for \(\alpha, \beta \). If it is not solvable, justify why.

\[
\begin{array}{ccc}
 x_i & y_i & l_i \\
-2 & 1 & -1 \\
-1 & 1 & 1 \\
 1 & 1 & 1 \\
 2 & 1 & -1 \\
\end{array}
\]

Table 1: *
Labels for data you are classifying

(c) Finally, you consider the model: \(l_i \approx \alpha x_i + \beta x_i^2 + \gamma \), where \(\alpha, \beta, \gamma \in \mathbb{R} \). Independent of the work you have done so far, would you expect this model or the model in part (b) (i.e. \(l_i \approx \alpha x_i + \beta x_i^2 \)) to have a smaller error in fitting the data? Explain why.