1. Modular Circuit Buffer
 “How to combine circuits”
 Can we build a circuit that computes the following arithmetic? \(V_x = \frac{1}{2} V_{in} \quad V_y = \frac{1}{3} V_x \)

 Circuits we'd like to implement
 (these are the "modules")

a) Draw a voltage divider for each operation:

 \[V_x = \left(\frac{R_x}{R_x + R_y} \right) V_{in} = \frac{1}{2} V_{in} \]

 \[V_y = \left(\frac{R_y}{R_y + 2R_y} \right) V_{in} = \frac{1}{3} V_{in} \]

 While the ratio of resistor values within \[\frac{1}{2} \] and \[\frac{1}{3} \] circuits are fixed (\(R_i = R_2 \) and \(R_i = 2R_2 \) respectively), there is no relation of these values between circuits. Thus they've been left as \(R_x \) and \(R_y \) in general.
b) Link the two circuits as initially stated. Does it behave as we hoped?

Now that a load has been added to the \(V_2 \) module, its behavior is altered by an alternate route for current:

\[
R_{EQ} = \left(\frac{1}{R_x} + \frac{1}{2R_y + R_j} \right)^{-1} = \frac{3R_y R_x}{3R_y + R_x}
\]

\[
V_x = \left(\frac{R_{EQ}}{R_x + R_{EQ}} \right) V_{in} = \left(\frac{3R_y R_x / (R_x + 3R_y)}{R_x + 3R_x R_y / (R_x + 3R_y)} \right) V_{in} = \left(\frac{3R_x R_y}{R_x^2 + 3R_x R_y + 3R_x R_y} \right) V_{in} = \frac{1}{2 + \frac{R_x}{3R_y}} V_{in}
\]

\[
V_y = \frac{1}{3} \left(\frac{1}{2 + \frac{R_x}{3R_y}} \right) V_{in} \neq \frac{1}{3} V_{in}
\]

Since the latter \(V_3 \) still has no load, \(V_y = \frac{1}{3} V_x \).

Oh no! I guess just slapping 2 voltage dividers together...

Notice though that for \(R_y \ll R_x \) we find \(V_x \approx \frac{1}{2} V_{in} \) and \(V_y \approx \frac{1}{3} V_{in} \), but we want to be picky and have the circuits work exactly like in their isolated modules regardless of \(R_x, R_y \). We need op-amps...

This is because effectively no current gets into the \(V_3 \) circuit and it still "looks open" to the \(V_2 \) circuit.
Try including an op-amp (in negative feedback) within the circuit to circumvent the loading issue!

Try inserting a unity gain op-amp circuit between them, so the output of \(\frac{1}{2} \) feeds to an op-amp input terminal:

Since the inputs to an op-amp act like open circuits, the \(\frac{1}{2} \) preserves its behavior!

Quick aside...

Review of unity gain op-amp circuit

Golden rule: \(I_+ = I_- = 0 \)

Gain: \(V_b = A(u_+ - u_-) \)

where \(A \) is HUGE (\(A \approx 10^6 \))

Now \(u_+ = V_a \) and \(u_- = V_b \) (since they're the same node), so we find:

\[
V_b = A(V_a - V_b) \quad \Rightarrow \quad (1 + A)V_b = AV_a
\]

\[
V_b = \left(\frac{1}{1 + \frac{1}{A}} \right)V_a \approx V_a
\]
2. Modular Op-Amp Circuits

Perform the following operations using op-amps:

(a) \(V_{\text{out}} = +5V_{\text{in}} \)
(b) \(V_{\text{out}} = -2V_{\text{in}} \)
(c) \(V_{\text{out}} = V_1 + V_2 \)

Can these circuits be combined while maintaining their function?

(a) We need a non-inverting amplifier:

\[
\text{Given that } V_{\text{in}} \text{ leads into an op-amp input terminal (no current), we can safely connect this circuit to others without issue.}
\]
(b) We need an inverting amplifier: \[\frac{V_{in}}{-2} \rightarrow V_{out} \]

Since \(u_- = u_+ = 0 \), we know \(I = \frac{V_{in} - 0}{R_1} \)

and so \(V_{out} = V_{in} + I \cdot R_2 \)

\[= V_{in} \left(1 + \frac{R_2}{R_1} \right) \]

Now we need \(1 + \frac{R_2}{R_1} = 5 \) \(\Rightarrow \) \(R_2 = 4R_1 \)

Given that 'Vin' does have a current connection to 'Vout', we would not be able to attach a voltage divider before this circuit without messing up that divider. However, the gain \([-2]\) works regardless!

\[\text{we'd need a buffer} \swarrow \]

\[\text{(c) } V_{out} = V_1 + V_2 \]

\[u_+ = \frac{1}{2}(V_1 + V_2) \]

\[I = \frac{V_1 + V_2}{2R} \]

\[V_{out} = 2u_- \]

\[= \frac{2}{2}(V_1 + V_2) \]

\[= V_1 + V_2 \swarrow \]