EECS 16A Designing Information Devices and Systems I
Summer 2023

Homework 1

This homework is due Friday, June 23, 2023 at 23:59.
Self-grades are due Friday, June 30, 2023 at 23:59.

This homework is meant to help you learn how to submit homework assignments and self-grades and so we can get to know you. However, it is still graded. Make sure you are comfortable with submitting homework assignments and self-grades, and remember, we are here to help you!

Submission Format
Your homework submission should consist of one file.
hw1.pdf: A single PDF file that contains all of your answers (any handwritten answers should be scanned). Submit the file to the appropriate assignment on Gradescope.

1. Background
Welcome to EECS 16A! We would love to learn a bit more about you. Please fill out this form (https://forms.gle/rwN3NG452dAxzNqH6). For this problem, filling out the Google form is sufficient. Nothing needs to be written/submitted to Gradescope for this question.

2. Syllabus
Read the course syllabus and answer the following questions.
The syllabus can be found here: https://eecs16a.org/policies.html.

(a) What are the dates and times for the quest, midterm, and the final exam?
(b) If you need exam accommodation, whom do you contact and how?
(c) When is homework 2 (not this homework) due? When is homework 2’s self-grade due? In general, what day of the week is the homework due and at what time? In general, what day of the week are the self-grades due and at what time?
(d) When are homework parties? In what room are they normally held? Homework parties are where groups of students can get together to work on the homework together.
(e) How many homework drops do you get? (Reminder: the homework drop is for extenuating circumstance such as getting sick, family emergencies etc. You should plan on completing and submitting all homework assignments and self-grades.) How do you use this drop?
(f) How many slip days do you receive throughout the semester? Which assignments can you use slip days on? What is the maximum number of slip days you can use on any one assignment?
(g) What is the penalty if you turn in your self-grades up to one week late?
(h) What score will you get on a homework if you do not submit your self-grades?
(i) Provide a complete list of everything you must do in order to receive credit for your homework assignments. Note that we’re just looking for a high-level overview (think bulleted list).
(j) Read the following guide:
https://docs.google.com/document/d/1bTyQE6-MhExK5ZXP9nW4Zyjo1MHSzZN7cMNq7Exzt6/edit?usp=sharing
What are the five steps in the submission process for a PDF on Gradescope? Please note that if you do not select pages for each question/subquestion we cannot grade your homework and we will be forced to give you a 0.

(k) What percentage do you need to get on a homework assignment for you to get full credit for the assignment?

(l) How many discussions do you need to attend to get full participation credit?

(m) Fill in the blanks: You should attend discussion sections on ______, ______, ______, and ______ each week.

(n) What is "Popcorn"? When is it due?

(o) What are you allowed to bring to exams? What are you not allowed to bring to exams?

(p) Fill in the blank:
If you miss ___ or more labs, you will fail the class.

(q) Fill in the blank:
During buffer lab periods, you may get checked off for at most ______ missed lab that occurred during that lab module by attending a buffer section.

(r) As a student in this course, what online forum should you check regularly?

3. Academic Honesty

For each scenario described below, indicate whether or not it constitutes academic dishonesty according to course policies. Provide a brief justification for your answer.
Course policies on collaboration can be found here: https://eecs16a.org/policies.html#collaboration.

(a) John downloaded homework solutions off of the Spring 2021 website before they were taken down. When he gets really stuck and can’t figure out the next step of a problem, he checks these solutions for a hint.

(b) Esmeralda and Joseph are working on the homework together with their study group. When Joseph gets stuck on a problem, he explains his logic to Esmeralda and she asks questions to help him figure out where he went wrong. Once they agree on the approach, they both write up their solutions independently.

(c) Lily has all of her homework finished except for one block of iPython code. At 11:55pm on Friday, she can’t get rid of a pesky syntax error, so she has her roommate Michelle send her working code. She pastes this code into her iPython notebook and submits it, citing Michelle as a collaborator.

4. Homework resources

If you need help on a homework problem or have a question about the material, what are some of the resources you might be able to use?

(i) Homework party
(ii) TA office hours
(iii) Professor office hours
(iv) Asking a friend taking 16A
(v) Posting on Ed
(vi) Going to discussion
(vii) All of the above

5. Reading Assignment
For this homework, please read Note 0 and Note 1A. These will provide an overview of linear equations and augmented matrices. You are always welcome and encouraged to read ahead as well. How does the content you read in these notes relate to what you’ve learned before? What content is unfamiliar or new?

6. Magic Square
In an $n \times n$ "magic square," all of the sums across each of the n rows, n columns, and 2 diagonals equal magic constant k. For example, in the below magic square, each row, column, and diagonal sums to 34.

\[
\begin{array}{ccc}
4 & 14 & 15 \\
9 & 7 & 6 \\
5 & 11 & 10 \\
16 & 2 & 3 \\
\end{array}
\]

The magic square is a classic math puzzle, and some of you may have solved these as children by guessing. However, it turns out they can be solved systematically by setting up a system of linear equations!

(a) How many linear equations can you write for an $n \times n$ magic square?

(b) For the generalized magic square below, write out a system of linear equations.
 \textbf{Hint:} Set the sum of entries in each row, column, and diagonal equal to k.

\[
\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33} \\
\end{array}
\]

(c) Now consider the following square, with some entries filled in. Substitute the known entries into the linear equations you wrote in part (b) to solve for the missing entries x_{11}, x_{12}, x_{32}. Please show the equations you use to solve; credit will not be given for solving by inspection.

\[
\begin{array}{ccc}
2 & x_{12} & 6 \\
9 & 5 & 1 \\
x_{31} & x_{32} & 8 \\
\end{array}
\]
(d) Suppose you now have a ‘tomographic’ magic square. This square is special in that the product of the \textit{exponentials} of the elements sum to a constant. So, the equation for the first row might look like:

\[e^{x_{11}} \times e^{x_{12}} \times e^{x_{13}} = k \]

where \(k \) is the constant value of the magic square. Can you write out a system of linear equations for this new magic square? If so, write out the new system. If not, explain why.

\textbf{Hint}: Think about what you did in the previous part. In combination with properties of \(e \), can you transform this new system into a linear form? Remember that \(\ln(e^x) = x \ln(e) = x \).

7. \textbf{Recognizing Linear Equations}

Your instructor, Anvitha, started taking EECS C106A (Robotics), and wanted to brush up on her physics knowledge. She remembered the following formula describing the position of an object with respect to time:

\[x = v_0 t + \frac{at^2}{2} \]

Here, we assume a starting position of 0 meters, where \(v_0 \) represents the initial velocity, and \(a \) represents the acceleration (assumed to be constant).

(a) A lot of robotics involves understanding system parameters based on measurements. You consider thinking about them from a 16A lens, and first want to see if the equation is linear. Is the equation linear with respect to \(t \)? In other words, is the function \(x(t) \) linear? How about with respect to \(v_0 \) AND \(a \) (i.e is \(x(v_0, a) \) linear)? If it is linear, show the properties of homogeneity and superposition hold for those variables. If not, explain which property it violates.

(b) You decide to test your theory of linearity by taking measurements of a projectile thrown by the robot arm. You record the following measurements:

- At \(t = 1 \) second, the position, \(x \), is measured to be 1 meter.
- At \(t = 2 \) seconds, the position, \(x \), is measured to be -7.8 meters.

Can you set this up as a system of linear equations and calculate the value of \(v_0 \) and \(a \)?

8. \textbf{Homework Process and Study Group}

Who did you work with on this homework? List names and student IDs. (In case you met people at homework party or in office hours, you can also just describe the group.) How did you work on this homework? Please remember to submit both your homework as well as the self-grade assignment following the release of the solutions. A full description of the submission process is listed on the class website (eees16a.org).