EECS 16A - Module 2

Today:
* Quick Review
* Inverting Amplifier
* Cascading CE & BC Blocks
* Design Example

Logistics
- OH right after lecture (Pavone)
 - Same link as Prof. Pavone
- No extension for HW 2 Rete

Review: Op-Amp Golden Rules

\[\begin{align*}
 &v^+ \quad i^+ \\
 &v^- \quad i^-
\end{align*} \]

GR #1: \(i^+ = i^- = 0 \) Always

GR #2: \(v^+ = v^- \) For an Op-Amp in Negative Feedback and with infinite gain \(A \)
Non-Inverting Amplifier

\[V_{out} = \left(1 + \frac{R_1}{R_2}\right) V_{in} \]

Non-inverting because the voltage gain is always \(> 0 \)

Inverting Amplifier

\[V_{out} = A \cdot (V^+ - V^-) \]

if \(V_{out} > 0 \) \(\Rightarrow \) \(V_{out} \) is positive

Established Negative Feedback!
Let's analyze this circuit:

\[V_{\text{in}} \rightarrow I_{R_1} R_1 + V_{R_1} - V_{R_2} \rightarrow I_{R_2} R_2 + V_{R_2} \rightarrow V_{\text{out}} \]

KCL on the inverting node: \(I_{R_1} = I_{R_2} \)

Ohm's law:
\[
\frac{V_{R_1}}{R_1} = \frac{V_{R_2}}{R_2}
\]

\[\Rightarrow \frac{V_{\text{in}} - V^-}{R_1} = \frac{V^- - V_{\text{out}}}{R_2} \] (1)

GR #2: \(V^- = V^+ = 0 \) (2)

(1) \(\Rightarrow \) \[\frac{V_{\text{in}}}{R_1} = -\frac{V_{\text{out}}}{R_2} \]

\[\Rightarrow V_{\text{out}} = -\frac{R_2}{R_1} V_{\text{in}} \]

\(\Delta \) Voltage gain
Why negative coefficients?

\[V_{out} = aV_{in1} + bV_{in2} + cV_{in3} + \ldots \]
\[\text{want } b < 0 \]

Inversion is a very useful operation in general (for signal processing, sensing, matrix-matrix mult)

Cascading Circuit Blocks

\[V_{in} \rightarrow \text{Sensor} \rightarrow V_{out,s} \rightarrow -3 \rightarrow V_{out} \]

\[\text{equivalent} \]

Before connection: \(V_c = V_{out,s} \)

After connection: \(V_c = V_r = \frac{R}{R+R_s} V_{out,s} \)

\[= V_{out,s} \checkmark \]
Solution: Add a buffer!

\[U_r = V_- = V_+ = V_c = V_{out,s} \checkmark \]

Takeaway: Safe way to connect these blocks is by adding buffers in between.
Design Example

Countdown Timer Circuit

Button \(\rightarrow\) 2 sec \(\rightarrow\) LED (2V)

Step 1: Specification

Build a circuit that after a button is pushed measures 2s and then applies 2V on an LED.

Assumption: You can only press the button once.

Step 2: Strategy

Push the button \(\rightarrow\) Turn-on timer \(\rightarrow\) Timer \(\rightarrow\) LED

2s
Step 3: (Implementation)

Turn-on ctrl: \[- \] (switch)

\[I_c = C \frac{dV_c}{dt} = \frac{I_s}{C} t + V_c(0) \]

Putting it all together:
Set \(V_{\text{ref}} = V_c(2) \)

Step 4: (Verify)

\[V_c(t) = \frac{I_s}{C} t + V_c(0) \]

\(I_s \) is unknown!

Before button pushed:

\[i_2 \]

\[I_s \]

Solution:

Connect the switch to ground.
Revisit Step 3:

NOTE: Now the switch is CLOSED
BEFORE the button is pushed
and OPEN after it is pushed

Before the button is pushed:

\[V_c = 0 = \text{constant} \]
\[I_c = C \cdot \frac{dV_c}{dt} \]

\[I_s = I_w + I_c, \text{ but } I_c = 0 \]
\[\Rightarrow I_w = I_s \text{ (path of least resistance)} \]
After the button is pushed

\[V_c(t) = \frac{I_s}{C} t + V_c(0) \]

\[V_{\text{ref}} = V_c(2) = \frac{I_s}{C} \cdot 2 \]