EE16A
Inversion
Invertibility brings justice!

Images released by Interpol in 2007 show the ‘unswirling’ of the internet pictures that led to the capture of Christopher Paul Neil.
I have 3 reservoirs: A, B, C and I want to keep track of how much water is in each. When I turn on some pumps, water moves between the reservoirs. Where the water moves and what fraction is represented by arrows.

Nodes

I have 3 reservoirs: A, B, C and I want to keep track of how much water is in each.

Nodes

When I turn on some pumps, water moves between the reservoirs.

Nodes

Where the water moves and what fraction is represented by arrows.

Edge weights

Note, all this stuff happens at one single time step!

“directed” graph because arrows have a direction.
Recap Last Class:

Pumps - example:

And I run pumps once, so \(t=0 \rightarrow t=1 \)

So columns represent outflows, rows represent inflows.

Does outflow have to be equal to inflow? to 1?
No, but then water is not conserved! (there is a source or sink)

What happens if I swap direction of arrows?
P gets transposed, NOT the inverse.

Recall, we can think of \(P \) matrix as a transformation of the state.

What if I run pumps twice?

Take output of first run and use as input for second run.

Example: \(\dot{x}(t=0) = \begin{bmatrix} 2 \\ 6 \end{bmatrix} \)

First run:

\[\dot{x}(t=1) = P \cdot \dot{x}(t=0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \]

Second run:

\[\dot{x}(t=2) = P \cdot \dot{x}(t=1) = P \cdot P \cdot \dot{x}(t=0) = P \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2.5 \\ 3.5 \end{bmatrix} \]

Is water conserved? Yes since sum of \(P \) col values = 1 for all cols.

What if I run pumps a bajillion times? Is there an equilibrium state, "steady state"?

I.e. does the water levels settle to a steady value?

Such that in steady state, \(\dot{x} \rightarrow \dot{x}_w \), we have \(\dot{x}_w = P \cdot \dot{x}_w \).
Written in matrix-vector multiplication form:

\[\tilde{\mathbf{x}}^* = P \tilde{\mathbf{x}}^* \]

If it exists, then equilib. input = output

Rearrange: \[P \tilde{\mathbf{x}}^* - \tilde{\mathbf{x}}^* = 0 \]

\[P \tilde{\mathbf{x}}^* - I \tilde{\mathbf{x}}^* = 0 \]

\[P \tilde{\mathbf{x}}^* = \tilde{\mathbf{x}}^* \]

↑ doesn't change anything cause \(I \tilde{\mathbf{x}}^* = \tilde{\mathbf{x}}^* \)

but matches up dimensions

\[(P - I) \tilde{\mathbf{x}}^* = 0 \]

\[\text{A form!} \]

\[\begin{bmatrix} 1/2 & 1/6 & 1/3 \\ 1/2 & 1/3 & 0 \\ 0 & 1/2 & 2/3 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1^*}^* \\ x_{2^*}^* \\ x_{3^*}^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

\[P \text{ From example} \]

Augmented Matrix form:

\[\begin{bmatrix} -1/2 & 1/6 & 1/3 & 0 \\ 1/2 & -2/3 & 0 & 0 \\ 0 & 1/2 & -1/3 & 0 \end{bmatrix} \]

do G.E.

system has infinite sol'ns

\[\tilde{x}^* = \begin{bmatrix} 8 \alpha \\ 6 \alpha \\ 9 \alpha \end{bmatrix} \]

for any scalar \(\alpha \in \mathbb{R} \)

Let's pick \(\alpha = 1 \)

\[\tilde{x}^* = \begin{bmatrix} 8 \\ 6 \\ 9 \end{bmatrix} \]

steady state Solution

How can we check if it's correct?!

Plug into:

\[P \cdot \tilde{x}^* = \begin{bmatrix} 1/2 & 1/6 & 1/3 \\ 1/2 & 1/3 & 0 \\ 0 & 1/2 & 2/3 \end{bmatrix} \begin{bmatrix} 8 \\ 6 \\ 9 \end{bmatrix} = \begin{bmatrix} 4 + 1 + 3 \\ 4 + 2 + 0 \\ 0 + 3 + 6 \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \\ 9 \end{bmatrix} \]

output is same as input! ✓

Recap:

to find \(\tilde{x} \) at later time, apply \(P \) successively.

E.g. \(\tilde{x}(t+1) = P \cdot \tilde{x}(t) \)

\(\tilde{x}(t+2) = P^2 \cdot \tilde{x}(t) \)

\(\tilde{x}(t+\infty) = P^\infty \cdot \tilde{x}(t) \)?
What if I want to know the water levels at a previous time?

What is \(\hat{x}(t=-1) \)? Given I know \(\hat{x}(t=0) \),

\[\hat{x}(t-1) \]

can write as \(\hat{x}(t-1) \)

The linear transformation that describes this is called the **Inverse**

denoted \(A^{-1} \) or \(P^{-1} \)

\[\begin{align*} P^{-1} \hat{x}(t) &= P^{-1} \hat{x}(t-1) \\
&= \hat{x}(t-1) \end{align*} \]

The inverse of \(P \) 'undoes' what \(P \) did

Is it same as turning arrows backward? No! see discussion sec.

Examples:

What is the inverse of \(f(x) = 2x \)?

\[g(x) = \frac{1}{2} x, \]

so \(f(g(x)) = x \)

Is \(f(x) = 0 \) invertible? No

Is eating a sandwich invertible? No (not really)

Is a scribble with iPad stylus invertible? Yes, with 'undo'

Basically, invertible means we can 'undo' function & recover input.

(think about tomography problem application)

Example:

System \(R: \)

\[\begin{align*} \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x_1 \cr x_2 \end{bmatrix} & = \begin{bmatrix} 0.5 & 1 \\
0 & 0.5 \end{bmatrix} \begin{bmatrix} x(t) \cr 0 \end{bmatrix} \\
= R \cdot \hat{x}(t) \end{align*} \]

System \(Q: \)

\[\begin{align*} \begin{bmatrix} A^2 & B^2 \end{bmatrix} \begin{bmatrix} x_1 \cr x_2 \end{bmatrix} & = \begin{bmatrix} 0 & 2 \\
0 & 0 \end{bmatrix} \begin{bmatrix} x(t+1) \cr x(t+2) \end{bmatrix} \\
= Q \cdot \hat{x}(t) \end{align*} \]

Let's compute:

\[\begin{align*} \hat{x}(t+1) &= R \cdot \hat{x}(t) \rightarrow \text{run } R \text{ system} \\
\hat{x}(t+2) &= Q \cdot \hat{x}(t+1) \rightarrow \text{then } Q \\
= Q \cdot R \hat{x}(t) \\
&= \begin{bmatrix} 2 & 0 \\
0 & 2 \end{bmatrix} \begin{bmatrix} 0.5 & 0 \\
0 & 0.5 \end{bmatrix} \hat{x}(t) \\
= \begin{bmatrix} 1 & 0 \\
0 & 1 \end{bmatrix} \hat{x}(t) \\
\end{align*} \]

\[\text{nothing changes!} \]

Back to input...

So \(Q \cdot R = R \cdot Q = I \)

and \(Q \& R \) are inverses of each other
Definition of Inverse matrix: Let \(P, Q \) be square matrices

\(P \) is the inverse of \(Q \), and vice versa, if \(P \cdot Q = Q \cdot P = I \)

\(\) We say \(P = Q^{-1} \)

 mtx mult is generally \underline{not} commutative, but Inverses are.

Properties:

- Inverse is unique
- Any inverse is inverse on both left and right
- Inverse exist implies one unique solution to system

Example:

\[
\begin{align*}
\begin{pmatrix}
\frac{1}{2} \\
1 \\
\frac{1}{2}
\end{pmatrix}
& \xrightarrow{A} \begin{pmatrix} 1 & 0 \end{pmatrix} \\
& \xrightarrow{B} \begin{pmatrix} 1 & 0 \end{pmatrix}
\end{align*}
\]

What is \(P \) matrix?

Write out equations:

\[
\begin{align*}
X_A(t+1) &= X_B(t) \\
X_B(t+1) &= \frac{1}{2}X_A(t) + X_C(t) \\
X_C(t+1) &= \frac{1}{2}X_A(t)
\end{align*}
\]

\[
P = \begin{bmatrix} 0 & 1 & 0 \\
\frac{1}{2} & 0 & 1 \\
\frac{1}{2} & 0 & 0 \end{bmatrix}
\]

How to find inverse?

Want \(P^{-1} \) such that

\[
\begin{align*}
\vec{x}(t) &= P^{-1} \vec{x}(t+1) \\
\vec{x}(t+1) &= P \vec{x}(t)
\end{align*}
\]

\[
P \cdot P^{-1} = I
\]

But it's mtx-mtx mult., not mtx-vector like \(\vec{x} = \vec{b} \)?

treat each col as separate mtx-vector problem!

Could solve 3 G.E. \(Ax = b \) style problems for \(\hat{p}_1, \hat{p}_2, \hat{p}_3 \) then put into matrix

BUT steps of G.E. only depend on \(P \) so can do all at once! yay!
Theorem: If the cols of mtx A are lin. dep.,
then A is not invertible \((A^{-1} \text{ doesn't exist})\)

\[
P \implies q \implies \neg q \implies \neg P
\]

If A invertible \(\implies\) then cols of A are lin. indep.

Proof:

Known/Beginning

\[
A = \begin{bmatrix}
1 & 1 & 1 \\
\tilde{a}_1 & \tilde{a}_2 & \tilde{a}_3 \\
1 & 1 & 1
\end{bmatrix}
\]

cols lin. dep.

so can write by defn of lin. dep.
there exists
\[c_1 \tilde{a}_1 + c_2 \tilde{a}_2 + \cdots + c_n \tilde{a}_n = \mathbf{0}\]

and not all \(c_i\)'s are zero

need to connect cols to \(A^{-1}\)?

If we let \(A^{-1}\) exist:

\[A^{-1} \cdot A = AA^{-1} = I\]

can we write col or mtx. in terms of other?

Write col stuff as mtx:

\[
\begin{bmatrix}
\tilde{a}_1 & \tilde{a}_2 & \cdots & \tilde{a}_n
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix} = \mathbf{0}
\]

\[A \begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix} = \mathbf{0}\]

Now what? mult by \(A^{-1}\) on both sides on LEFT does not commute.

\[A^{-1}(A \begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix}) = A^{-1}\mathbf{0} \neq \mathbf{0}\]

\[\text{QED}\]
Finding a matrix inverse by **Gauss-Jordan Method**

- Similar process as Gauss Elim.
- Work to get into **reduced Row Echelon form (RREF)**

If \(A \) is invertible, want to find \(B = A^{-1} \) such that \(A \cdot B = I \)

Augmented matrix form:

\[
\begin{bmatrix}
A & I \\
\end{bmatrix} \xrightarrow{G.E.} \begin{bmatrix}
I & A^{-1} \\
\end{bmatrix}
\]

At end of G.E.

What if G.E. doesn't work?
- Then there is no inverse (or you made a mistake!)

Ex:

\[
\begin{bmatrix}
a & b & 1 & 0 \\
c & d & 0 & 1 \\
\end{bmatrix}
\]

Assume \(a \) is positive here.

\[
\begin{bmatrix}
a & b & 1 & 0 \\
0 & ad-bc & -c & a \\
\end{bmatrix}
\]

Row 2 - \(c \) times Row 1

Can't be zero or inverse doesn't exist

\[
\begin{bmatrix}
a & b & 1 & 0 \\
0 & 1 & \frac{-bc}{ad-bc} & \frac{a}{ad-bc} \\
\end{bmatrix}
\]

Row 1 \(\rightarrow \) Row 1 - \(b \) times Row 2

\[
\begin{bmatrix}
1 & 0 & \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\
0 & 1 & \frac{-c}{ad-bc} & \frac{a}{ad-bc} \\
\end{bmatrix}
\]

\(R1 \) \(\rightarrow \) \(\frac{1}{a} \)

\[
\begin{bmatrix}
1 & 0 & \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\
0 & 1 & \frac{-c}{ad-bc} & \frac{a}{ad-bc} \\
\end{bmatrix}
\]

Pull out scalar

\[
A^{-1} = \frac{1}{ad-bc} \begin{bmatrix}
d & -b \\
-c & a \\
\end{bmatrix}
\]

Formula for \(2 \times 2 \) inverse