Welcome to EECS 16A!
Designing Information Devices and Systems I

Ana Claudia Arias and Miki Lustig
Fall 2021

Module 2
Lecture 7
Capacitive Touchscreens
(Note 17)
Last lecture: Capacitors

- Charge storage device (like a ‘bucket’ for charge)
- holds electric charge when we apply a voltage across it, and gives up the stored charge to the circuit when voltage removed

Symbol: \[\cap \]
Capacitance: \(C \)
Units: Farads [F]

IV equation:
Capacitance

\[C = \varepsilon \frac{A}{d} \]

\[[F] = \left[\frac{F}{m} \right] \left[\frac{m^2}{m} \right] \]

Depends on:
- Materials: \(\varepsilon \) permittivity
 \[\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m} \]
 \[\varepsilon = \varepsilon_0 \varepsilon_r \]
- Geometry of Conductors

Conductive plates

Dielectric

Symbol:

\[\frac{}{} \]

Capacitance: \(C \)
Units: Farads [F]

IV equation:

\[I = C \cdot \frac{dV}{dt} \]
Circuit Model: IV relationship

Capacitor Symbol

\[Q_{\text{elem}} = C \cdot V_{\text{elem}} \]
\[[C] \quad [F] \quad [V] \]
(Farad)

We know: \[I_{\text{elem}} = \frac{d Q_{\text{elem}}}{dt} \]
\[I_{\text{elem}} = C \cdot \frac{d V_{\text{elem}}}{dt} \]
\[C = \text{constant over time} \]

→ Can use the same 7-step analysis.
Simple Circuit 1

KCL: \(I_s = I_c \)

Element Def.: \(I_c = C \cdot \frac{dV_c}{dt} \)

Voltage Def.: \(U_i - 0 = V_c \)

\[I_s = C \frac{dU_i}{dt} \times dt \]

\[I_s \cdot dt = C dU_i \]

\[\int_0^t I_s \, dt = \int_0^t C \cdot dU_i \]

\[I_s \cdot t = C \cdot (U_i(t) - U_i(0)) \]

\[U_i(t) = \frac{I_s}{C} \cdot t + U_i(0) \]
Simple Circuit 2

\[
\begin{align*}
U_i - 0 &= V_s \quad \{ \text{Voltage Def.} \} \\
U_i - 0 &= V_c \\
V_s &= V_c \\
I_c &= C \frac{dV_c}{dt} \quad \{ \text{capacitor Def.} \} \\
I_c &= C \frac{dV_c}{dt} = C \cdot \frac{dV_s}{dt} = 0
\end{align*}
\]

Current in a capacitor is zero when a constant voltage source is across it.

Hint: We like zeros... they make our lives easier!
Simple Circuit 3

looking for U_1 value when

$V_c = \text{const. (steady-state)}$

$I_c = C \frac{dV_c}{dt} = 0$

KCL: $I_c^0 + I_R = 0$

$I_R = 0$

Ohm's law: $V_R = I_R R = 0$

Voltage Def: $U_1 - 0 = V_R^0$

$U_1 = 0$

Steady State: means the Voltages Settled.

If current is zero \Rightarrow OPEN-CIRCUIT
Equivalent Circuits with Capacitors

* Capacitor-only circuits

Step 1: Find \(V_{th} \) and \(I_{no} \) no source

Step 2: \(C_{eq} = \frac{I_{elem}}{\frac{dV_{elem}}{dt}} \)

\[\begin{array}{c}
\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} = C_{eq} \\
\end{array} \]

Only if \(\left(\text{match } \frac{dV_{elem}}{dt} \right) \)
Two Methods:

a) Apply I_{test} and measure $\frac{dV_{test}}{dt}$

b) Apply $\frac{dV_{test}}{dt}$ and measure I_{test}

\[C_{eq} = \frac{I_{test}}{\frac{dV_{test}}{dt}} \]

(a)
Example 1

\[V_{c1} = U_1, \; V_{c2} = U_1 \quad \text{and} \quad U_1 = V_{\text{test}} \]

\[\frac{dU_1}{dt} = \frac{dV_{\text{test}}}{dt} \]

Element def: \[I_{c1} = C_1 \frac{dV_1}{dt} = C_1 \frac{dU_1}{dt} = C_1 \frac{dV_{\text{test}}}{dt} \]

Element def: \[I_{c2} = C_2 \frac{dV_2}{dt} = C_2 \frac{dU_1}{dt} = C_1 \frac{dV_{\text{test}}}{dt} \]

KCL: \[I_{\text{test}} = I_{c1} + I_{c2} = C_1 \frac{dV_{\text{test}}}{dt} + C_2 \frac{dV_{\text{test}}}{dt} \]
\[I_{test} = (C_1 + C_2) \frac{dV_{test}}{dt} \]

\[C_{eq} = \frac{I_{test}}{\frac{dV_{test}}{dt}} = C_1 + C_2 \]

\[R_1 \quad \parallel \quad R_2 \]

\[R_{eq} = R_1 + R_2 \quad \text{(Series)} \]
Example 2: "Capacitors in series"

KCL: \[I_{C_1} = I_{C_2} = I_{test} \]

Elements:
\[I_{C_2} = C_2 \frac{dV_{C_2}}{dt} \]
\[I_{C_1} = C_1 \frac{dV_{C_1}}{dt} \]

Voltage Defn:
\[V_{C_2} = U_2 - 0 \]
\[V_{C_1} = U_1 - U_2 \]
\[V_{test} = U_1 - 0 \]

For \(V_{C_2} \):
\[I_{C_2} = C_2 \frac{dV_{C_2}}{dt} \]
\[I_{test} = C_2 \frac{dU_2}{dt} = \frac{dU_2}{dt} = \frac{I_{test}}{C_2} \]

For \(V_{C_1} \):
\[I_{C_1} = C_1 \frac{dV_{C_1}}{dt} \]
\[\frac{dV_{U_1}}{dt} = \frac{I_{C}}{C_1} = \frac{dU_1 - dU_2}{dt} = \frac{I_{test}}{C_1} \]
\[\frac{dU_1}{dt} = \frac{dU_2}{dt} + \frac{I_{test}}{C_1} = \frac{I_{test}}{C_2} + \frac{I_{test}}{C_1} \]

\[\frac{dV_{U_1}}{dt} = \frac{dV_{test}}{dt} = I_{test} \left(\frac{1}{C_2} + \frac{1}{C_1} \right) \]

\[C_{eq} = \frac{I_{test}}{\frac{dV_{test}}{dt}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} = \frac{C_1 C_2}{C_1 + C_2} = C_1 || C_2 \]

\[C_{eq} = C_1 || C_2 \quad (|| \quad parallel \quad mathematical \quad operator) \]
Example 3

\[C_{eq} = C_1 \parallel (C_2 + C_3) \]

\[\Rightarrow C_{eq_1} = C_2 + C_3 \]

\[C_{eq} = C_1 \parallel C_{eq_1} \]
Capacitive Touchscreen – Model without touch

\[C_0 = \varepsilon \cdot \frac{A}{d} \]
Capacitive Touchscreen – Model with touch

When there is a touch, it makes a capacitor!

Problem: How can Voltage/Current when the finger is one of the terminals?

Solution: Models / Good architecture
when no touch:

when touch:

Extra Capacitance due to touch!

Equivalent capacitance for C_1 in series with C_2

We only have access to nodes e and g, not f

Redraw to focus on terminals (nodes) e and g

\Rightarrow Equivalent capacitance for C_0 in parallel to $\frac{C_1C_2}{C_1+C_2}$