Welcome to EECS 16A!
Designing Information Devices and Systems I

Ana Claudia Arias and Miki Lustig
Fall 2021

Module 2
Lecture 6
Capacitors
(Note 16)
Now that we understand 2D resistive touchscreen, let's change it!

Circuit model for each resistive sheet is a grid of resistors.

Real-world touchscreens are usually capacitive, not resistive:
- don’t need to be flexible
- multi-touch is easier
- more sensitive
- increased contrast on screen
Now, Capacitors!

- Charge storage device (like a ‘bucket’ for charge)
The Physics of a Capacitor

* Energy is needed to move charge.

→ No current across the capacitor plates

→ Voltage Source provides Energy needed for flow of charges (e−)

https://www.youtube.com/watch?v=X4EUsTwZ110
The Physics of a Capacitor

Once the switch is ON, e⁻ flow!

https://www.youtube.com/watch?v=X4EUwTwZ110
The Physics of a Capacitor

Lack of electrons means holes! h^+

t_2

t_3

Potential difference between the two plates! V

Electric Field

https://www.youtube.com/watch?v=X4EUwTwZ110
The Physics of a Capacitor

Every Capacitor can be charged up to a fixed Voltage.

The capacitor will charge a "load" until the charges on the plate are equalized. (No change in V)

https://www.youtube.com/watch?v=X4EUwTwZ110
Charge storage device (like a ‘bucket’ for charge)
Holds electric charge when we apply a voltage across it, and gives up the stored charge to the circuit when voltage removed
Circuit Model: IV relationship

Capacitor Symbol

\[Q_{\text{elem}} = C \cdot \frac{d}{dt} V_{\text{elem}} \]

\[[\text{C}] \quad [\text{F}] \quad [\text{V}] \]

(Farad)

We know: \[I_{\text{elem}} = \frac{dQ_{\text{elem}}}{dt} \]

\[I_{\text{elem}} = \frac{d}{dt} C \cdot V_{\text{elem}} \]

\[C = \text{constant over time} \]

\[I_{\text{elem}} = C \cdot \frac{dV_{\text{elem}}}{dt} \]

\[\Rightarrow \text{Can use the same 7-step analysis.} \]
Capacitance

\[C = \varepsilon \frac{A}{d} \]

\[[F] = \left[\frac{E}{m} \right] \left[\frac{m^2}{m} \right] \]

Depends on:
- Materials: \(\varepsilon \) permittivity
 \[\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m} \]
 \[\varepsilon = \varepsilon_0 \varepsilon_r \]
- Geometry of Conductors

Conductive plates

Symbol:

Capacitance: \(C \)
Units: Farads [F]

IV equation:
\[I = C \cdot \frac{dV}{dt} \]
Simple Circuit 1

![Circuit Diagram]

KCL: \(I_S = I_c \)

Element Def.: \(I_c = C \cdot \frac{dV_c}{dt} \)

Voltage Def.: \(V_i - 0 = V_c \)

\[I_s = C \frac{dU_i}{dt} \times dt \]

\[I_s \cdot dt = C \frac{dU_i}{dt} \]

\[\int_0^t I_s dt = \int C \cdot dU_i \]

\[U_i(t) - U_i(0) \]

\[I_s \cdot t = C \cdot (U_i(t) - U_i(0)) \]

\[U_i(t) = \frac{I_s}{C} \cdot t + U_i(0) \]
Simple Circuit 2

\[V_s - 0 = V_c \] \quad \text{(Voltage Def.)}

\[V_s = V_c \]

\[I_c = C \frac{dV_c}{dt} \quad \text{(capacitor Def.)} \]

\[I_c = C \frac{dV_c}{dt} = C \cdot \frac{dV_s}{dt} = 0 \]

Current in a capacitor is zero when a constant voltage source is across it.

Hint: We like zeros... they make our lives easier!
Simple Circuit 3

Looking for U_i value when $V_c = \text{const. (steady-state)}$

$$I_C = C \frac{dV_C}{dt} = 0$$

KCL: $I^o_C + I_R = 0$

$I_R = 0$

Ohm's law: $V_R = I^o_R R = 0$

Voltage Def: $U_i - 0 = V_R^o$

$U_i = 0$

Steady State: means the Voltages settled.

If current is zero \Rightarrow Open Circuit
Equivalent Circuits with Capacitors

- Capacitor-only circuits

Step 1: Find V_{in} and I_{no} no source

Step 2: $C_{eq} = \frac{I_{elem}}{\frac{dV_{elem}}{dt}}$

![Diagram of equivalent circuits with capacitors]
Two Methods:

a) Apply I_{test} and measure $\frac{dV_{test}}{dt}$

b) Apply $\frac{dV_{test}}{dt}$ and measure I_{test}

$$C_{eq} = \frac{I_{test}}{\frac{dV_{test}}{dt}}$$

(a)
Example 1

\[V_{C_1} = U_1, \quad V_{C_2} = U_1 \quad \text{and} \quad U_1 = V_{\text{test}} \]

\[\frac{dU_1}{dt} = \frac{dV_{\text{test}}}{dt} \]

Element definition:

\[I_{C_1} = C_1 \frac{dV_1}{dt} = C_1 \frac{dU_1}{dt} = C_1 \frac{dV_{\text{test}}}{dt} \]

\[I_{C_2} = C_2 \frac{dV_2}{dt} = C_2 \frac{dU_1}{dt} = C_1 \frac{dV_{\text{test}}}{dt} \]

KCL:

\[I_{\text{test}} = I_{C_1} + I_{C_2} = C_1 \frac{dV_{\text{test}}}{dt} + C_2 \frac{dV_{\text{test}}}{dt} \]
\[I_{\text{test}} = (C_1 + C_2) \frac{dV_{\text{test}}}{dt} \]

\[C_{eq} = \frac{I_{\text{test}}}{dV_{\text{test}}/dt} = C_1 + C_2 \]

\[R_{eq} = R_1 + R_2 \]

Series
Example 2: "Capacitors in series"

\[
\begin{align*}
&\text{KCL: } I_{c_1} = I_{c_2} = I_{\text{test}} \\
&\text{Elements:} \\
&I_{c_2} = C_2 \frac{dV_{c_2}}{dt} \\
&I_{c_1} = C_1 \frac{dV_{c_1}}{dt} \\
&\text{Voltage Def:} \\
&V_{c_2} = U_2 - 0 \\
&V_{c_1} = U_1 - U_2 \\
&V_{\text{test}} = U_1 - 0
\end{align*}
\]

For \(V_{c_2} \):
\[
I_{c_2} = C_2 \frac{dV_{c_2}}{dt}
\]
\[
I_{\text{test}} = C_2 \frac{dU_2}{dt} = \frac{dU_2}{dt} = \frac{I_{\text{test}}}{C_2}
\]

For \(V_{c_1} \):
\[
I_{c_1} = C_1 \frac{dV_{c_1}}{dt}
\]
\[
\frac{dV_i}{dt} = \frac{I_c}{C_1} = \frac{dU_i - dU_2}{dt} = \frac{I_{\text{test}}}{C_1}
\]
\[
\frac{dU_i}{dt} = \frac{dU_2}{dt} + \frac{I_{\text{test}}}{C_1} = \frac{I_{\text{test}}}{C_2} + \frac{I_{\text{test}}}{C_1}
\]
\[
\frac{dV_i}{dt} = \frac{dV_{\text{test}}}{dt} = I_{\text{test}} \left(\frac{1}{C_2} + \frac{1}{C_1} \right)
\]
\[
C_{\text{eq}} = \frac{I_{\text{test}}}{\frac{dV_{\text{test}}}{dt}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} = \frac{C_1 C_2}{C_1 + C_2} = C \ll C_2
\]
\[
C_{\text{eq}} = C \ll C_2 \quad (\ll = \text{parallel mathematical operator})
\]
Example 3

\[C_{eq} = C_1 \parallel (C_2 + C_3) \]

\[\Rightarrow C_{eq_1} = C_2 + C_3 \]

\[C_{eq_2} = C_1 \parallel C_{eq_1} \]
Capacitive Touchscreen – Model without touch

\[C_0 = \varepsilon \cdot \frac{A}{d} \]
Capacitive Touchscreen – Model with touch

When there is a touch, it makes a capacitor!

- finger
- dielectric
- conductive plate

Problem: How can Voltage/Current when the finger is one of the terminals?

Solution: Models / Good architecture
When no touch:

\[e \quad \frac{1}{C_0} \quad g \]

With touch:

\[e \quad \frac{1}{C_0 + \frac{C_1C_2}{C_1+C_2}} \quad g \]

We only have access to nodes \(e \) and \(g \), not \(f \).

Redraw to focus on terminals (nodes) \(e \) and \(g \).

Equivalent capacitance for \(C_1 \) in series with \(C_2 \):

\[\frac{C_1C_2}{C_1+C_2} \]

\[\Rightarrow \text{Equivalent capacitance for } C_0 \text{ in parallel to } \frac{C_1C_2}{C_1+C_2} \]