Welcome to EECS 16A!
Designing Information Devices and Systems I

Ana Claudia Arias and Miki Lustig
Fall 2021

Module 2
Lecture 7
Capacitors and Capacitive Touchscreens
(Note 17)
Greetings from Miki & Ana
Last lecture: Capacitors

- Charge storage device (like a ‘bucket’ for charge)
- holds electric charge when we apply a voltage across it, and gives up the stored charge to the circuit when voltage removed

Symbol: \[\cap \]

Capacitance: \(C \)
Units: Farads [F]

IV equation: \[I = C \cdot \frac{dV}{dt} \]

Conductive plates

\[C = \varepsilon \cdot \frac{A}{d} \]
Circuit Model: IV relationship

Capacitor Symbol

\[Q_{\text{elem}} = C \cdot V_{\text{elem}} \]

\[[C] \begin{bmatrix} C \end{bmatrix} = [F] \begin{bmatrix} V \end{bmatrix} \]

(Farad)

We know: \(I_{\text{elem}} = \frac{dQ_{\text{elem}}}{dt} \)

\[I_{\text{elem}} = \frac{d}{dt} C \cdot V_{\text{elem}} \]

\(C = \text{constant over time} \)

\[I_{\text{elem}} = C \cdot \frac{dV_{\text{elem}}}{dt} \]

→ Can use the same 7-step analysis.
Equivalent Circuits with Capacitors

* Capacitor - only circuit

Step 1: find V_{th}/Ino no source

Step 2: $C_{eq} = \frac{I_{eq}}{\frac{dV_{el}}{dt}}$

\[
\begin{align*}
\text{Step 1:} & \quad \text{find } V_{th}/Ino \quad \text{no source} \\
\text{Step 2:} & \quad C_{eq} = \frac{I_{eq}}{\frac{dV_{el}}{dt}}
\end{align*}
\]
a) Apply \(I_{test} \) and measure \(\frac{dV_{test}}{dt} \) and

\[
C_{eq} = \frac{I_{test}}{\frac{dV_{test}}{dt}}
\]

b) Apply \(\frac{dV_{test}}{dt} \) and measure \(I_{test} \)

* These are methods for experiments
Elem Definition: \(I_{c_1} = C_1 \frac{dV_{c_1}}{dt} \)

\(I_{c_2} = C_2 \frac{dV_{c_2}}{dt} \)

KCL: \(I_{test} = I_{c_1} + I_{c_2} = C_1 \frac{dV_{test}}{dt} + C_2 \frac{dV_{test}}{dt} = (C_1 + C_2) \frac{dV_{test}}{dt} \)

\[V_{c_1} = U_1, \quad V_{c_2} = U_1, \quad U_1 = V_{test} \]

\[\frac{dU_1}{dt} = \frac{dV_{test}}{dt} \]
\[I_{\text{test}} = (C_1 + C_2) \frac{dV_{\text{test}}}{dt} \]

\[C_{\text{eq}} = \frac{I_{\text{test}}}{dV_{\text{test}}/dt} = C_1 + C_2 \]

[parallel]
KCL: $I_{c_1} = I_{c_2} = I_{test}$

Elem Definition:

$I_{c_2} = C_2 \frac{dV_{c_2}}{dt}$

$I_{c_1} = C_1 \frac{dV_{c_1}}{dt}$

$V_{c_2} = U_2 - 0 = U_2$

$V_{c_1} = U_1 - U_2$

$V_{test} = U_1$
For V_{C_2}: \[I_{test} = I_{C_2} = C_2 \frac{dU_2}{dt} \Rightarrow \frac{dU_2}{dt} = \frac{I_{test}}{C_2} \]

For V_{C_1}: \[I_{C_1} = C_1 \frac{dU_1}{dt} - \frac{dU_2}{dt} \Rightarrow \frac{I_{test}}{C_1} = \frac{I_{test}}{C_1} = \frac{dU_1 - dU_2}{dt} \]

\[
\frac{dU_1}{dt} = \frac{I_{test}}{C_1} + \frac{dU_2}{dt} \quad \text{Substitute} \quad \frac{dU_1}{dt} = \frac{I_{test}}{C_1} + \frac{I_{test}}{C_2}
\]

\[
\frac{dV_{test}}{dt} = I_{test} \left(\frac{1}{C_1} + \frac{1}{C_2} \right)
\]

\[
C_{eq} = \frac{I_{test}}{\frac{dV_{test}}{dt}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} = \frac{C_1 C_2}{C_1 + C_2} = \frac{C_1}{C_2} \quad \text{Series}!
\]
Equivalent capacitors

Capacitors in **Series**

\[C_{eq} = \frac{C_1 C_2}{C_1 + C_2} \]

Capacitors in **Parallel**

\[C_{eq} = C_1 + C_2 \]
$C_{eq} = C_1/11 (C_2 + C_3)$
Capacitive Touchscreen – Model without touch

\[C_0 = \varepsilon \frac{A}{d} \]

\[\int_{E_2} \frac{E_1}{C_0} \]
Capacitive Touchscreen – Model with touch

When there is touch, we form a capacitor:

Problem: How can we measure V or I if our electrode is a finger?
When no touch

\[E_1 \quad \text{=} \quad C_0 \quad \text{=} \quad E_2 \]

Circuit model:

Redraw to focus on terminals we can measure.
No touch

With Touch

\[C_0 \quad E_1 \]

\[C_0 + \frac{C_1 C_2}{C_1 + C_2} \]

\[E_2 \]

\[\frac{C_1 C_2}{C_1 + C_2} = C_0 \text{ (change)} \]
How do we measure change in capacitance?

Option 1:

Assume $V_{out}(0) = 0$

$$I_s = C_q \frac{dV_{out}(t)}{dt} \Rightarrow V_{out}(t) = \int_0^t \frac{I_s}{C_q} dt$$

$$V_{out} = \frac{I_s \cdot t}{C_q} \Rightarrow C_q = \frac{I_s \cdot t}{V_{out}}$$

Can't build current source easily.
Measuring Capacitance Models – Attempt #1

If there is touch: \(V_{out} = V_s \)

If there is no touch: \(V_{out} = V_s \)

Bad Idea!
Measuring Capacitance Models – Attempt #2 – add switches and a reference capacitor

1. Close both switches

 Same as before

2. Phase 1: Close s_1, open s_2

\[Q = V_s \cdot C_{eq} \]
Measuring Capacitance Models – Attempt #2 – add switches and a reference capacitor

Initial condition?

Charge sharing

Phase 2: Close S2, open S1
Measuring Capacitance Models – Attempt #3 – known initial condition

Phase 1: S_1, S_3 closed, S_2 open
- Charge C_{eq}
- Discharge C_{ref}

$Q_{ref} = C_{ref} \cdot V_{out} = 0$ \hspace{1cm} \footnotesize{(V_{out}=0)}

$Q_{eq} = C_{eq} \cdot V_s$
Measuring Capacitance Models – Attempt #3 – known initial condition

redistribute, until same voltage

Phase 2: S_1, S_3 open, S_2 closed
Voltage across C_{eq}: V_{out}
Voltage across C_{ref} = V_{out}

$Q_{total,2} = C_{eq} \cdot V_{out} + C_{ref} \cdot V_{out}$
Effect of touch on total capacitance

Total charge is conserved!

\[Q_{\text{total,1}} = Q_{\text{total,2}} \]

\[C_{\text{eq}} \cdot V_s = C_{\text{eq}} \cdot V_{\text{out}} + C_{\text{ref}} \cdot V_{\text{out}} \]

\[V_{\text{out}} = \frac{C_{\text{eq}}}{C_{\text{eq}} + C_{\text{ref}}} \cdot V_s \]

By touching, we change voltage
Effect of touch on total capacitance

\[
\begin{align*}
\text{no touch} & : E_1 \quad C_0 \quad V_{out} = \frac{C_0}{C_0 + C_{ref}} \cdot V_s \\
\text{with touch} & : E_1 \quad C_0 + \frac{C_1 C_2}{C_1 + C_2} \quad V_{out} = \frac{C_0 + C_0}{C_0 + C_0 + C_{ref}} \cdot V_s
\end{align*}
\]
How can we go from voltage measurement to binary answer: touch or no touch?

- Threshold Voltage (V_{th}):
 - Between V_{out_touch} & $V_{out_no_touch}$
 - Above V_{th}: 1 (touch)
 - Below V_{th}: 0 (no touch)

We need to compare V_{out} to V_{th}

So far: △ △ △ △ △ △ 🎀 🎀
How can we go from voltage measurement to binary answer: touch or no touch?

- New tools are needed – new circuit elements

![Circuit Elements Diagram]
An example of an Op-amp circuit diagram

Schematic diagram of a model 741 op-amp.
An op-amp (operational amplifier) is a device that transforms a small voltage difference into a very large voltage difference.

An op-amp has two input terminals marked (+) and (−) with potentials U_+ and U_-, two power supply terminals called VDD and VSS, and one output terminal with potential U_{out}.
Comparator – optimized for binary output & speed

\[V_{\text{out}} = V_{\text{DD}} \text{ if } V^* > V_{\text{DD}} \]

\[V_{\text{out}} = V_{\text{SS}} \text{ if } V^* < V_{\text{SS}} \]

Assume \(A = \infty \)
Comparator – optimized for binary output

If \(V_{\text{eit}} > V_{\text{th}} \), \(V_{\text{out}} = V_{\text{DD}} \)

If \(V_{\text{c}(t)} \leq V_{\text{th}} \), \(V_{\text{out}} = V_{\text{SS}} \)
Back to our Capacitive Touchscreen

In the diagram, the voltage V_{DD} is connected to the capacitors C_{eq} and C_{ref}, and the output V_{comp} is compared against a threshold voltage V_{th}. The circuit indicates that when a touch occurs, the voltage V_{DD} is applied to the capacitors, and no touch occurs when the voltage remains at V_{SS}. The diagram also shows that the output is expected to be between V_{touch} and $V_{notouch}$. The circuit uses an operational amplifier to compare the voltages and determine the touch state.
Enjoy Spring Break!