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EECS 16A Designing Information Devices and Systems I
Fall 2023 Final Exam

Final Solution

PRINT your student ID:

PRINT your name: ,
(last name) (first name)

PRINT your discussion section and GSI:

Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

0. Honor Code (0 Points)
Acknowledge that you have read and agree to the following statement and sign your name below:
As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will
follow the rules and do this exam on my own.
If you do not sign your name, you will get a 0 on the exam.

1. When the exam starts, write your SID at the top of every page. (3 Points)
No extra time will be given for this task.

2. Tell us about something you are proud of this semester. (2 Points)

3. What are you looking forward to over winter break? (2 Points)

Do not turn this page until the proctor tells you to do so. You may work on the questions above.
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PRINT your name and student ID:

4. Strike a Chord (4 points)

Alex built a bot that helps you learn to play the guitar. It listens to you play a melody and compares it to a tar-
get melody. Each melody maps to a vector. The target melody you are learning maps to

[
1 −1 1 −1

]T.

You play “melody A” that maps to
[
−1 1 1 −1

]T and “melody B” that maps to
[
1 −1 −1 −1

]T.

A smaller angle between two melodies means they are closer. Does “melody A” or “melody B” have a
smaller angle with the target melody? Justify your response.

θ 0◦ 30◦ 45◦ 60◦ 90◦

cos(θ) 1
√

3
2

1√
2

1
2 0

Table 4.1: Helpful cosine values.

Solution:
The formula for the cosine value of an angle between two vectors x⃗ and y⃗ is given by

cos(θ) =
x⃗ · y⃗
∥⃗x∥∥⃗y∥

.

Denote target vector as t⃗, melody A’s vector as a⃗, and melody B’s vector as b⃗. We can find the angles θa and
θb: the angles between the target melody and each of melodies A and B, respectively.

cos(θa) =
a⃗ ·⃗ t
∥⃗a∥∥⃗t∥

=

[
−1 1 1 −1

]T ·
[
1 −1 1 −1

]T√
(−1)2 +(1)2 +(1)2 +(−1)2

√
12 +(−1)2 +12 +(−1)2

=
−1−1+1+1

4

= 0.

According to the table, this corresponds to an angle of 90 degrees for θa.

cos(θb) =
b⃗ ·⃗ t
∥⃗b∥∥⃗t∥

=

[
1 −1 −1 −1

]T ·
[
1 −1 1 −1

]T√
(1)2 +(−1)2 +(−1)2 +(−1)2

√
12 +(−1)2 +12 +(−1)2

=
1+1−1+1

4
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=
1
2
.

According to the table, this corresponds to an angle of 60 degrees for θb.

Since θb < θa, melody B is closer to the target melody.
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PRINT your name and student ID:

5. Landing Gear (13 points)

Youbin, a forgetful space pilot, often forgets to deploy his landing gear on his spaceship. Using his knowl-
edge from the capacitive touchscreen lab, he wants to design a circuit that will sense when the spaceship is
close to the surface and automatically deploy the landing gear.

(a) (5 points) Youbin installs two electrodes E1 and E2 on the bottom of his spaceship as shown in Figure
5.1.

Figure 5.1: Capacitance diagram when landing

The two electrodes form a capacitor with capacitance C0. When the spaceship nears the surface,
the electrodes also form a capacitor C1 and C2 with the surface. The surface can be assumed to be
conductive. Draw a circuit diagram that represents the system when the spaceship is near the
surface. Explicilty label the capacitors C0,C1,C2 and the nodes E1,E2 and Surface. What is the
equivalent capacitance Ceq between E1 and E2 when the spaceship is near the surface? You may
use the parallel operator in your answer.
Solution: Since the surface is conducting, the bottom plate of C1 is connected to the bottom plate of
C2 and we can draw the following circuit diagram that represents the capacitance when the spaceship
is near the surface:

C1

E1

C0
E2

C2

Surface

With respect to nodes E1 and E2, we can use our equivalent capacitance equations to note that

Ceq =C0 +(C1 ∥C2) .
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(b) (4 points) In order to detect the change in capacitance, Youbin connects a time-varying current source
Is(t) to the electrodes with effective capicitance Ceq, as shown in Figure 5.2.

Is(t) Ceq

+

−

VC(t)

Figure 5.2

He knows that when landing, Ceq = 1µF and Is(t) outputs a square wave shown in Figure 5.3.

0.5 1 1.5 2 2.5

−2mA

2mA

ms

Is(t)

Figure 5.3

Assuming VC(0) = 0V, plot VC(t) from t = 0ms to t = 2.5ms in the space provided below. Clearly
label the minimum and maximum values.
Solution:
For a capacitor, we know that Q = CeqVC. Taking the derivative of both sides, we see that Is =

dQ
dt =

Ceq
dVC
dt . In our case, we can solve to find

dVC

dt
=

Is

Ceq
=
±2mA

1µF
=±2V/s ,

which means that VC will change linearly in a triangle wave. Knowing that VC(0) = 0V, we can draw

0.5 1 1.5 2 2.5

-2V

-1V

1V

2V

ms

VC(t)
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(c) (4 points) Youbin finds that the difference in peak voltages of VC is small when the capacitance changes.
He decides to amplify VC by a gain of 5 in order to better distinguish the peak voltages. He designs
the circuit shown in Figure 5.4. You may assume the op-amp is ideal. Choose values for resistors R1
and R2 such that Vout = 5VC. Show your work.

−

+

−
+VC

R1

+

−

Vout

R2

Figure 5.4: Amplifier circuit

Solution: We notice that the circuit drawn is a non-inverting op-amp. As such, we can note that

Vout

VC
= 1+

R1

R2
.

For this problem, we want

5 = 1+
R1

R2
R1

R2
= 4 .

For example, we can pick R1 = 4kΩ, R2 = 1kΩ, although any combination of R1 and R2 that satisfies
the ratio above is a valid solution.
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PRINT your name and student ID:

6. Let’s Go, Mooncow! (28 points)

UC Berkeley, in preparation for their new Space Exploration Research
Center at NASA Ames, has tasked you with understanding the space travels
of a newly discovered creature named “Mooncow”.

(Despite his name, Mooncow bears a surprisingly strong resemblance
to what we call "Monkeys" on Earth).

For this problem, assume the galaxy is two-dimensional, and the sun represents the origin.

(a) (2 points) Mooncow is moving in a 2D galaxy and has access to three boosters. Each booster moves

him in a specific direction:
[

3
6

]
,
[
−1
−2

]
, and

[
5
6

]
. He must choose the fewest number of boosters to

reach any point in the galaxy. Which boosters should he choose?
Note: There may be multiple correct answers.

□

[
3
6

]
□

[
−1
−2

]
□

[
5
6

]
Solution:
Mooncow needs to choose boosters corresponding to 2 linearly independent vectors to span all of R2.

Using the definition of linear independence, the possible solutions are {
[

3
6

]
,

[
5
6

]
} or {

[
−1
−2

]
,

[
5
6

]
}.

(b) (3 points) Mooncow wants to plot the locations of two planets. Using the provided graph, plot the

position vectors of the planets he sees: Planet X:
[
−2
3

]
, Planet Y:

[
5
−3

]
. Label the planets.

EECS 16A, Fall 2023, Final Exam 7
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Solution:

(c) (4 points) Mooncow sees a solar eclipse taking place on Planet B due to the position of Planet A. He is

at
[

4
0

]
, Planet A is at

[
1
−1

]
and Planet B is at

[
4
−4

]
. Mooncow wants to travel to the eclipsed region

(i.e. the line segment joining the two planets) as shown in Figure 6.1. Mooncow takes the shortest path
to reach this line segment.
Compute the coordinates of where Mooncow will arrive on the path of the eclipse, and state how
far he will be from Planet A when he arrives. Your solution must be justified by calculations, but
you may use the graph to help you.
Solution:

EECS 16A, Fall 2023, Final Exam 8
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Figure 6.1

Mooncow arrives at
[

2
−2

]
, which is

√
2 units from Planet A.

Justification:

i. Calculate u⃗ = b⃗− a⃗, corresponding to the line segment between Planet A and Planet B:

u⃗ =

[
4
−4

]
−
[

1
−1

]
=

[
3
−3

]
ii. Denote Mooncow’s position vector as v⃗ and calculate the dot product v⃗ · u⃗:

v⃗ · u⃗ =

[
4
0

]
·
[

3
−3

]
= (4 ·3)+(0 ·−3) = 12

iii. Calculate the squared norm of u⃗, ∥⃗u∥2:

∥⃗u∥2 =

∥∥∥∥[ 3
−3

]∥∥∥∥2

= 32 +(−3)2 = 9+9 = 18

iv. Use the projection formula to find proj⃗u(⃗v):

proj⃗u(⃗v) =
v⃗ · u⃗
∥⃗u∥2 · u⃗ =

12
18
·
[

3
−3

]
=

2
3
·
[

3
−3

]
=

[
2
−2

]
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Alternative solution - geometric approach:
The slope of the line segment between the two planets is -1, so the shortest distance between the line
segment and Mooncow is an orthogonal line that passes through Mooncow’s location.

This means the shortest path has a slope of 1 and passes through
[

4
0

]
.

Using point-slope form, the equation for this line is (y−0) = 1(x−4), which simplifies to y = x−4
And the equation for the line segment between the two planets is (y−1) =−1(x+1), which simplifies
to y =−x

The intersection of these two lines is at
[

2
−2

]
, so this is where Mooncow will arrive.

Lastly, the distance from Planet A is given by finding the magnitude of the difference between Planet

A’s position and Mooncow’s position:
[

2
−2

]
-
[

1
−1

]
=
[

1
−1

]
d =

√
(2−1)2 +(−2− (−1))2 =

√
12 +(−1)2 =

√
1+1 =

√
2

(d) (3 points) Mooncow’s position vector is at
[

2
4

]
. He is orbiting the sun in a counterclockwise direction.

His velocity vector is in the direction of his motion and is orthogonal to his position vector. Calculate
Mooncow’s velocity vector. His velocity vector should be unit length. Show your work.
Solution:
Mooncow’s position vector x⃗ is given by

[
2
4

]
.

His velocity vector, denoted as v⃗, is orthogonal to his position vector, so x⃗ · v⃗ = 0.

Let v⃗ =
[

v1
v2

]
. Thus, the dot product x⃗ · v⃗ = 0 gives us the equation 2v1 +4v2 = 0.

Solving this equation leads to v⃗ =
[
−2
1

]
(or some scalar multiple of this vector).

Magnitude of this vector is
√

(−2)2 +(1)2 =
√

5

Therefore, the corresponding unit vector is:
[
−2/
√

5
1/
√

5

]
.

(e) (4 points) Kanav finds Mooncow is located at
[

4
6

]
. He recalibrates his measurement device and finds

EECS 16A, Fall 2023, Final Exam 10
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these measurements need to be rotated clockwise by 60 degrees. Find Mooncow’s real location.
Show your work. Recall that sin(60◦) =

√
3

2 , sin(−60◦) = −
√

3
2 , and cos(60◦) = cos(−60◦) = 1

2 .
Solution:
Rotation matrix is given by:

R(θ) =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
We are applying a clockwise rotation, so we will use the rotation matrix with θ = −60 degrees. This
gives us the rotation matrix R:

R =

[
1
2

√
3

2
−
√

3
2

1
2

]
.

Apply this rotation matrix to the initial measured point:

[
1
2

√
3

2
−
√

3
2

1
2

] [
4
6

]
=
[

2+3
√

3
3−2

√
3

]
Thus, Mooncow’s real location is at

[
2+3

√
3

3−2
√

3

]
.

(f) (4 points) We have lost track of Mooncow and are searching the galaxy for him! Anish is located on

Planet X at
[

0
4

]
, and he detects Mooncow is 4 units away. Sabriya is located on Planet Y at

[
−3
4

]
, and

she detects Mooncow is 5 units away. They know Mooncow always stays at least 2 units away from
the sun. What coordinates is Mooncow at? Show your work. Your solution must be justified by
calculations, but you may use the graph to help you.

Figure 6.2

Solution:
Planet X is centered at

[
0
4

]
and Mooncow is detected 4 units away, so the equation corresponding to

his possible locations is (x)2 +(y−4)2 = 16.

Planet Y is centered at
[
−3
4

]
and Mooncow is detected 5 units away, so the corresponding equation

for his possible locations is (x− (−3))2 +(y−4)2 = 25.
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Solving the system of equations:

(x)2 +(y−4)2 = 16

(x− (−3))2 +(y−4)2 = 25

Expand and simplify each equation:

x2 + y2−8y+16 = 16

x2 +6x+9+ y2−8y+16 = 25

:

x2 + y2−8y = 0

x2 +6x+ y2−8y = 0

Subtracting first equation from the second:

6x = 0

x = 0

Substituting this value back into x2 + y2−8y = 0:

y2−8y = 0

y = 0,8

So the possible locations for Mooncow are given by the intersection points:
[

0
0

]
and

[
0
8

]
. Since we

know Mooncow must be at least 2 units away from the sun, he must be located at
[

0
8

]
.

EECS 16A, Fall 2023, Final Exam 12
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Table 6.1

x y
-3 -8
0 10
5 0
0 -10
-5 0
4 6

(g) (4 points) Sayan has been tracking Mooncow and has the following measurements for Mooncow’s
positions:
Kepler’s laws dictate that Mooncow’s spaceship follows an elliptical orbit. Recall an ellipse follows
the formula αx2+βxy+γy2+δx+εy = 1. What are the unknowns Sayan must identify to find the
equation for the ellipse? Using the data points in Table 6.1, formulate the least squares equation
in matrix-vector form that would be used to solve for the equation of the ellipse.
Solution:
The unknowns are α,β ,γ,δ , and ε .
We can formulate the least squares problem as follows:

x2
1 x1y1 y2

1 x1 y1

x2
2 x2y2 y2

2 x2 y2

x2
3 x3y3 y2

3 x3 y3

x2
4 x4y4 y2

4 x4 y4

x2
5 x5y5 y2

5 x5 y5

x2
6 x6y6 y2

6 x6 y6




α

β

γ

δ

ε

=



1
1
1
1
1
1





(−3)2 (−3)(−8) (−8)2 −3 −8

(0)2 (0)(10) (10)2 0 10

(5)2 (5)(0) (0)2 5 0

(0)2 (0)(−10) (−10)2 0 −10

(−5)2 (−5)(0) (0)2 −5 0

(4)2 (4)(6) (6)2 4 6




α

β

γ

δ

ε

=



1
1
1
1
1
1


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

9 24 64 −3 −8

0 0 100 0 10

25 0 0 5 0

0 0 100 0 −10

25 0 0 −5 0

16 24 36 4 6




α

β

γ

δ

ε

=



1
1
1
1
1
1



(h) (4 points) To bring Mooncow back home, Anish needs to know Mooncow’s mass. He cannot measure
Mooncow’s mass directly; instead, he measures the gravitational force on Mooncow F and Mooncow’s
acceleration a and uses the equation F = ma to solve for mass. The measurements of Mooncow’s
acceleration and force are as follows:

Table 6.2

a(m
s2 ) F( kg·m

s2 )

-2 -20
-1 -15
0 -3
1 10
2 20

We use the equation F ≈ ma to relate these variables. Set up a least squares problem to estimate m.
Compute the least squares solution of m. Show your work.
Solution:
We formulate the least squares problem as follows:

A⃗x = b⃗

In this case, A maps to a⃗, x⃗ maps to m⃗, and b⃗ maps to F⃗ , leading to the following setup:
−2
−1
0
1
2

 m⃗ =


−20
−15
−3
10
20


We then can compute the value of m̂ using the formula x̂ = (AT A)−1AT b⃗:

m̂ = (
[
−2 −1 0 1 2

]

−2
−1
0
1
2

)−1(
[
−2 −1 0 1 2)

]

−20
−15
−3
10
20


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m̂ = (10)−1 · (40+15+0+10+40) = 10.5 kg
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PRINT your name and student ID:

7. Caterwauls! (18 points)

(a) (4 points) Thomas’ cat Luna frequently wanders off. In order to keep track of her, Thomas is building
a tracking system. He installs a tracking collar that transmits a distinct signal l⃗ shown in Figure 7.1.

0 1 2 3 4

−1

0

1

time

Figure 7.1: Luna’s signal l⃗

0 1 2 3 4

−1

0

1

time

? ?

Figure 7.2: Recorded signal r⃗

In order to test his system he records the signal r⃗, as well as the cross-correlation corr⃗r (⃗l). Unfor-
tunately, he realizes that r⃗ has been corrupted in some places, as shown in Figure 7.2. The cross-
correlation corr⃗r (⃗l) is given in Figure 7.3.

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

Figure 7.3: Cross-correlation corr⃗r (⃗l)

Recover the missing entries r⃗[1] and r⃗[2]. Show your work.
Solution:
Let us represent the recorded signal r⃗ as [1,a,b,−1,1] with a and b being our unknown values. We can
compute the cross-correlation corr⃗r (⃗l)[k] at k = 1 and k = 2 to get

corr⃗r (⃗l)[1] =−a+b+1+1 =−a+b+2

corr⃗r (⃗l)[2] =−b−1−1 =−b−2

Using values from cross-correlation plot at shift values of 1 and 2, we get that

corr⃗r (⃗l)[1] = 2 =−a+b+2

corr⃗r (⃗l)[2] =−3 =−b−2 .

The system of equations has solution a = 1 and b = 1. Therefore we get that r⃗[1] = 1 and r⃗[2] = 1.
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(b) (3 points) Luna has wandered off! To locate her, Thomas records the signal s⃗ transmitted by Luna’s
collar and computes corr⃗s(⃗l) shown in Figure 7.4.

−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11

−6

−4

−2

0

2

4

6

8

10

Figure 7.4: Cross-correlation corr⃗s(⃗l)

Assume that the x-axis ticks correspond to a shift of 1×10−6 s and the transmissions travel at 3×108 m/s.
Compute the distance between Thomas and Luna. Show your work.
Solution:
The peak of the cross-correlation occurs at k = 5, so we know the time delay between the Luna and
Thomas is 5× 10−6 s. Therefore we know that Luna must be 5× 10−6 s · 3× 108 m/s = 1.5km away
from Thomas.

(c) (4 points) To prevent Luna from wandering too far, Thomas wants to design a circuit that plays a recall
sound through a speaker. The volume of the speaker should increase proportionally to Luna’s distance
from him. Thomas already has a converter circuit that converts Luna’s distance to a voltage Vdist. The
converter circuit and speaker can be represented by the Thevenin equivalents shown in Figures 7.5 and
7.6 respectively.

b

−
+Vdist

100Ω

a

Figure 7.5: Thevenin equivalent of converter

b

200Ω

−

+

Vspeaker

a

Figure 7.6: Thevenin equivalent of speaker

Thomas first connects the two circuits together directly, shown in Figure 7.7.

−
+Vdist

100Ω

200Ω

+

−

Vspeaker

Figure 7.7: Direct connection
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Given that 0V ≤ Vdist ≤ 6V, what is the maximum power dissipated by the speaker? Show your
work.
Solution:
Using the voltage divider formula, we notice that

Vspeaker =
200Ω

200Ω+100Ω
Vdist =

2
3

Vdist.

We can compute the power dissipated by a resistor as

Pspeaker = IVspeaker =
V 2

speaker

200Ω
=

4
9

V 2
dist

200Ω
.

Given the possible ranges of Vdist, the maximum power will occur when Vdist = 6V. In this case, the
maximum power dissipated by the speaker is

Pspeaker =
4
9

36V2

200Ω
=

2
25

W .

(d) (4 points) Thomas realizes that the speaker volume is too low when directly connected to the converter.
He instead wants to connect the circuits such that Vspeaker = Vdist. He only has access to a single ideal
op-amp and no other components. Complete the circuit below by connecting the elements given.
No element terminal should be left unconnected.
Solution: We can use the op-amp buffer in order to make sure that the voltage from the input is
preserved and not affected by the resistors. The buffer is connected as follows:

−

+

−
+Vdist

100Ω

200Ω

+

−

Vspeaker

(e) (3 points) Thomas needs to build a resistor out of resistive cubes which have a length, width, and height
of 5×10−3 m and a resistivity of 8× 10−3 Ωm. He plans to attach the cubes in a line into one long
resistor. How many cubes does he need to make a 40 Ω resistor? Justify your answer.
Solution: Using the formula R = ρL

A to compute the resistance, we find that the resistance of one
cube is:

Rcube = 8×10−3
Ωm

5×10−3 m
5×10−3 m ·5×10−3 m

=
8
5

Ω .

If we line up n cubes, they form a chain of resistors in series with total resistance R= nRcube. Therefore
we need

n =
R

Rcube
=

40Ω

8
5 Ω

= 25

cubes.
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8. Aficiona-dough (25 points)

Jiarui owns two pizza shops: Slice and Cheddarboard. He models the movement of his customers each
week. Each timestep represents a week.

(a) (4 points) Each week 40% of Slice’s customers move to Cheddarboard to buy pizza, while the re-
maining customers stay at Slice. 25% of Cheddarboard customers move to Slice, while the remainder
stay at Cheddarboard. Draw a state transition diagram modeling the flow of customers between
Jiarui’s restaurants.
Solution:
The state transition diagram is shown in Figure 8.1.

Slice Cheddarboard0.6 0.75

0.4

0.25

Figure 8.1: State transition diagram of the system.

(b) (4 points) Jiarui observes that the system follows a new state transition diagram (due to a change in his
menu), which is given in Figure 8.2.

Slice Cheddarboard0.8 0.55

0.2

0.45

Figure 8.2: New state transition diagram of the system.

Write the state transition matrix P corresponding to the Figure 8.2, such that c⃗[t + 1] = P · c⃗[t]

where c⃗[t] =
[

Slice[t]
Cheddarboard[t]

]
.

What is the nullspace of P? Justify your answer.
Hint: You need not mathematically compute the nullspace.
Solution:

P =

[
0.8 0.45
0.2 0.55

]
.

P has linearly independent columns. Hence it has a trivial nullspace given by span
{[

0
0

]}
.

(c) (6 points) Jiarui opens a third pizza shop: Asparagus. Initially, he has a total of 120 customers. The
state transition matrix of the system describing the flow of customers between the three restaurants is:
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Q =



2
3

2
5

1
2

0
3
5

0

1
3

0
1
2


such that, c⃗[t +1] = Q · c⃗[t] where c⃗[t] =

 Slice[t]
Cheddarboard[t]

Asparagus[t]

.

Find the number of customers in each shop at steady state. Show your work.
Solution:
At steady state, c⃗∗ = Q · c⃗∗, which indicates that the steady state vector lies in the eigenspace corre-
sponding to the eigenvalue of 1.
For computing the eigenvector for λ = 1:

2
3
−1

2
5

1
2

0

0
3
5
−1 0 0

1
3

0
1
2
−1 0


→


−1

3
2
5

1
2

0

0 −2
5

0 0

1
3

0 −1
2

0



→


1 −6

5
−3

2
0

0 −2
5

0 0

1
3

0 −1
2

0


R1← R1× (−3)

→


1 −6

5
−3

2
0

0 −2
5

0 0

0
2
5

0 0


R3← R3−

(
R1

3

)

→


1 −6

5
−3

2
0

0 1 0 0

0
2
5

0 0

 R2← R2×
(
−5

2

)
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→


1 −6

5
−3

2
0

0 1 0 0

0 0 0 0

 R3← R3−
(

2R2

5

)

→


1 0 −3

2
0

0 1 0 0

0 0 0 0

 R1← R1−
(
−6R2

5

)

Since the third column has no pivot, let v3 = t ∈R be the free variable. Now we can solve for v1, v2 as
follows:

v1−
3
2

v3 = 0

v2 = 0
=⇒

v1 =
3
2

t

v2 = 0

Writing the above in vector forms gives

v⃗ =


3
2

t

0

t

=


3
2

0

1

 t

which indicates that the steady state eigenvector is


3
2

0

1

, and the eigenspace is span




3
2

0

1


.

Let c⃗∗ = α ·


3
2

0

1

, where α ∈ R.

It can observed that this is a conservative system. So, the total number of customers at each time step
is fixed, which is 120 from the initial step.

Solving for α · (3
2
+0+1) = 120, we get α = 48. Hence,

c⃗∗ =

72
0
48


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(d) (6 points) Jiarui again observes a change in his system, and finds the new state transition matrix is

R =



5
3

2
3

2
3

4
3

4
3

1
3

4
3

1
3

4
3


.

Show that the vector

1
1
1

 is an eigenvector of this matrix. What is the corresponding eigenvalue?

Assuming that the initial state is

100
100
100

, how many customers are there in each shop after 10

timesteps? You do not need to reduce your answer. Show your work.
Solution:

If the vector v⃗ =

1
1
1

 is an eigenvector of R, then the matrix-vector multiplication R⃗v should yield a

scalar multiple of v⃗.

R⃗v =



5
3

2
3

2
3

4
3

4
3

1
3

4
3

1
3

4
3


·

1
1
1



=



1 ·
(

5
3
+

2
3
+

2
3

)
1 ·

(
4
3
+

4
3
+

1
3

)
1 ·

(
4
3
+

1
3
+

4
3

)



=

3
3
3



= 3 ·

1
1
1


= 3⃗v.
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Hence,

1
1
1

 is an eigenvector of R, with the eigenvalue 3.

The initial state is 100⃗v, which lies in the eigenspace corresponding to eigenvalue 3. So, after each
timestep, the number of customers will increase by a factor of 3. Therefore, after 10 timesteps, the
number of customers in each shop will be 310 ·100.

(e) (5 points) Let a state transition matrix S have eigenvalues λ1 = 1, λ2 = 2 and λ3 =
1
2 corresponding to

eigenvectors v⃗1, v⃗2 and v⃗3 respectively. The initial state is given by

c⃗[0] = α1v⃗1 +α2v⃗2 +α3v⃗3,

where α1,α2,α3 ∈ R. Let c⃗[t] represent the state after t timesteps.
Write c⃗[t] in terms of αi, λi and v⃗i, where i = 1,2,3.
Under what conditions on α1, α2 and α3 is lim

t→∞
c⃗[t] finite? Justify your answer.

Solution:

c⃗[t] = St⃗c[0]

= St · (α1⃗v1 +α2⃗v2 +α3⃗v3)

= α1St⃗v1 +α2St⃗v2 +α3St⃗v3

= α1λ
t
1⃗v1 +α2λ

t
2⃗v2 +α3λ

t
3⃗v3.

As t→ ∞, α1λ t
1⃗v1 and α3λ t

3⃗v3 will both be finite since α1,α3 ∈ R, λ t
1 = 1 and λ t

3→ 0. Since λ t
2→ ∞,

for α2λ t
2⃗v2 to be finite, α2 must be 0.

Therefore, for lim
t→∞

c⃗[t] to be finite, α2 = 0.
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9. Proofs (15 points)

(a) (7 points) Consider matrices A ∈ Rn×n and B ∈ Rm×n. Assume that A is invertible and B has a non-
trivial nullspace. Prove that BA has a nontrivial nullspace.
Solution:
Known:
A ∈ Rn×n and B ∈ Rm×n.
A is invertible.
B has a nontrivial nullspace, which means there exists a nonzero vector x⃗ ∈ Rn such that B⃗x = 0⃗.

To show:
BA has a nontrivial nullspace, which means there exists a nonzero vector y⃗ ∈ Rn such that BA⃗y = 0⃗.

Proof:
Since A is invertible, we know that both A and A−1 have a trivial nullspace. We know that x⃗ is a
nonzero vector in the null space of B. Let y⃗ = A−1⃗x. Since A−1 has a trivial nullspace and x⃗ ̸= 0⃗, we
know that y⃗ ̸= 0⃗. Next, using the associative property of matrix multiplication, note that

BA⃗y = BA(A−1⃗x)

= B(A−1A)⃗x

= B⃗x

= 0⃗.

Thus, y⃗ is a nonzero vector in the nullspace of BA which proves that BA has a nontrivial nullspace.

(b) (8 points) Let A1,A2, · · · ,Ak be k matrices in Rn×n. Assume all Ai have v⃗ ∈Rn as an eigenvector, with

corresponding eigenvalue λi for i = 1,2, · · · ,k. Assume that
k
∑

i=1
λi ̸= 1, and the matrix (I−

k
∑

i=1
Ai) is

invertible, where I is the identity matrix in Rn×n. Prove that v⃗ is an eigenvector of (I−
k
∑

i=1
Ai)
−1.

What is the corresponding eigenvalue? Show your work.
Solution: Known:
A1,A2, · · · ,Ak are k matrices in Rn×n.
All Ai have v⃗ ∈ Rn as an eigenvector, with corresponding eigenvalue λi for i = 1,2, · · · ,k, i.e., Ai⃗v =
λi⃗v.

k
∑

i=1
λi ̸= 1.

(I−
k
∑

i=1
Ai)
−1 exists.

To show:
v⃗ is an eigenvector of (I−

k
∑

i=1
Ai)
−1, i.e., (I−

k
∑

i=1
Ai)
−1⃗v = λ v⃗, where λ is the corresponding eigenvalue

that needs to be computed.
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Proof:
Adding the equations Ai⃗v = λi⃗v for i = 1,2, · · · ,k, we get

k
∑

i=1
Ai⃗v =

k
∑

i=1
λi⃗v.

Using I⃗v = 1 · v⃗,

I⃗v−
k

∑
i=1

Ai⃗v = 1 · v⃗−
k

∑
i=1

λi⃗v

(I−
k

∑
i=1

Ai)⃗v = (1−
k

∑
i=1

λi)⃗v.

Multiplying both sides by (I−
k
∑

i=1
Ai)
−1,

(I−
k

∑
i=1

Ai)
−1(I−

k

∑
i=1

Ai)⃗v = (I−
k

∑
i=1

Ai)
−1(1−

k

∑
i=1

λi)⃗v

=⇒ I⃗v = (1−
k

∑
i=1

λi)(I−
k

∑
i=1

Ai)
−1⃗v

=⇒ 1

1−
k
∑

i=1
λi

v⃗ = (I−
k

∑
i=1

Ai)
−1⃗v.

Therefore, v⃗ is an eigenvector of (I−
k
∑

i=1
Ai)
−1 with corresponding eigenvalue 1

1−
k
∑

i=1
λi

.
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10. Orthonormal Least Squares (13 points)

(a) (5 points) Suppose we are given the matrix

A =

 | |
a⃗1 a⃗2
| |

 ,

where ||⃗a1|| = ||⃗a2|| = 1 and a⃗1 is orthogonal to a⃗2, i.e., a⃗1 ⊥ a⃗2. Show that a⃗1 and a⃗2 are linearly
independent.
Hint: Consider a proof by contradiction (assume a⃗1 and a⃗2 are linearly dependent, i.e., a⃗1 = β a⃗2 for
β ∈ R).
Solution:
Known:

A =

 | |
a⃗1 a⃗2
| |

 is an orthonormal matrix, i.e., ||⃗a1||= ||⃗a2||= 1 and a⃗1 is orthogonal to a⃗2.

To show:
a⃗1 and a⃗2 are linearly independent.

Proof:
Let us prove using the contradiction method. Assume that a⃗1 and a⃗2 are linearly dependent, i.e.,
a⃗1 = β a⃗2 for β ∈ R.
Since ||⃗a1||= 1, ||β a⃗2||= |β | · ||⃗a2||= |β |= 1.
Also, a⃗1 is orthogonal to a⃗2, which means ⟨⃗a1, a⃗2⟩= 0. Hence, ⟨β a⃗2, a⃗2⟩= β ⟨⃗a2, a⃗2⟩= β ||⃗a2||2 = β =
0.
Thus, we arrive at a contradiction, implying that our initial assumption was wrong. Therefore, a⃗1 and
a⃗2 are linearly independent.

Alternative Proof:
a⃗1 and a⃗2 are linearly independent if we can show that for β1,β2 ∈ R, β1⃗a1 +β2⃗a2 = 0 implies β1 =
β2 = 0.

β1⃗a1 +β2⃗a2 = 0

||β1⃗a1 +β2⃗a2||2 = 0

β
2
1 ||⃗a1||2 +β

2
2 ||⃗a2||2 +2β1β2⟨⃗a1, a⃗2⟩= 0

β
2
1 +β

2
2 = 0.

Since the sum of squares of two real numbers is zero, the individual numbers should also be zero, i.e.,
β1 = β2 = 0. Also when β1 = β2 = 0, this directly implies that β1⃗a1 +β2⃗a2 = 0. Therefore, a⃗1 and a⃗2
are linearly independent.

(b) (8 points) Now suppose that the matrix A ∈ Rm×n is such that | | |
a⃗1 a⃗2 · · · a⃗n

| | |

 ,
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where ||⃗a1||= ||⃗a2|| · · ·= ||⃗an||= 1 and a⃗1, · · · , a⃗n are pairwise mutually orthogonal, i.e. a⃗i ⊥ a⃗ j for all
i, j = 1, · · · ,n and i ̸= j. For b⃗ ∈ Rm, we are given ⟨⃗ai ,⃗b⟩= ci for i = 1, · · · ,n. Find the projection of
b⃗ onto Col(A), where Col(A) represents the column space of A. Write your answer in terms of a⃗i

and ci. Show your work.
Hint: The projection of b⃗ onto Col(A) is given by A⃗x̂ where ⃗̂x is the least squares solution of A⃗x = b⃗.
Solution: The least squares solution is given by:

⃗̂x = (AT A)−1AT b⃗

=


− a⃗1

T −
...

− a⃗n
T −


 | |

a⃗1 · · · a⃗n

| |



−1− a⃗1

T −
...

− a⃗n
T −

 b⃗

=

a⃗1
T a⃗1 · · · a⃗1

T a⃗n
...

. . .
...

a⃗n
T a⃗1 · · · a⃗n

T a⃗n


−1− a⃗1

T −
...

− a⃗n
T −

 b⃗

=

1 · · · 0
...

. . .
...

0 · · · 1


a⃗1

T b⃗
...

a⃗n
T b⃗



=

⟨⃗a1 ,⃗b⟩
...

⟨⃗an ,⃗b⟩


=

c1
...

cn

 .

Therefore, the projection is:

A⃗x̂ =

 | |
a⃗1 · · · a⃗n

| |


c1

...
cn


= c1⃗a1 + · · ·+ cn⃗an

=
n

∑
i=1

ci⃗ai.
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11. Gold Code Inner Product Circuits (27 points)

Recall that Gold codes are sequences with elements equal to±1. We often need to compare the similarity of
Gold codes by finding their inner product. In this problem, we will try to design a circuit that can compute
inner products of Gold codes.

(a) (2 points) We are given two Gold codes s⃗1 =
[
1 −1 −1 −1 1 1

]T and s⃗2 =
[
1 1 −1 −1 1 −1

]T

each of length 6. The codes are represented by time-varying voltage signals V1(t),V2(t) that map the
±1 elements to ±1V symbols of length 1ms as shown in Figure 11.1.

1 2 3 4 5 6−1V

1V
ms

V1(t)

1 2 3 4 5 6−1V

1V
ms

V2(t)

Figure 11.1: Time-varying voltage signals V1(t),V2(t) that represent s⃗1, s⃗2 respectively

Compute the inner product ⟨s⃗1, s⃗2⟩. Show your work.
Solution:
We can compute

⟨s⃗1, s⃗2⟩= (1)(1)+(−1)(1)+(−1)(−1)+(−1)(−1)+(1)(1)+(1)(−1) = 2 .

Note that for Gold code signals, this can also be computed as the difference between the number of
matching elements and non-matching elements:

⟨s⃗1, s⃗2⟩= nmatching elements−nnon-matching elements = 4−2 = 2 .
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(b) (8 points) For Gold code signals, we notice that the multiplication of ±1 elements is equivalent to
checking if the two elements are equal. In the inner product circuit shown in Figure 11.2, an inverting
summer and a match detect circuit are used to check when V1(t) = V2(t). The results from the match
detect circuit are then integrated across the length of the signal to produce VIP which represents the
final inner product value.

Inverting
Summer

Match
Detect

Inverting
Integrator

V1(t)

V2(t)
VIP(t)

Vsum(t)
Vm+(t)

Vm−(t)

Figure 11.2: Block diagram of inner product circuit

In this part, we wish to design the inverting summer block. We have access to a single ideal op-amp
(already drawn) and up to three resistors for which we can choose values. No other components are
available. Design a circuit such that Vsum =−V1−V2. Label the resistances for all resistors used.
Solution:
Note: the inverting summing amplifier is analyzed in detail in Note 19.
The inverting summing amplifier can be designed as follows:

−

+

−
+V1

R1

−
+V2

R2

R3

+

−

Vsum

u−

u+

We can analyze this circuit using superposition. By the op-amp golden rules, we know that u− =
u+ = 0V. Thus if we apply superposition and keep V1 on and turn V2 off, we notice that both sides
of R2 are 0V and no current will flow through. In other words, we are just left with the inverting
amplifier configuration where Vsum,1 =−R3

R1
V1. Repeating the process by turning V2 on and V1 off gives

Vsum,2 =−R3
R2

V2. Adding these two results together yields

Vsum =−R3

R1
V1−

R3

R2
V2 .

For this problem, we want R3
R1

= R3
R2

= 1, which means that we must have R1 = R2 = R3. For example,
we can choose R1 = R2 = R3 = 1kΩ, but any solution with the inverting summing amplifier and equal
value resistors is valid.
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(c) (5 points) The match detect circuit wants to use Vsum = −V1−V2 to determine when V1 = V2. When
Vsum = 2V, we know that V1 and V2 match with value −1V. When Vsum =−2V, we know that V1 and
V2 match with value 1V. The match detect circuit can be implemented using comparators with outputs
Vm+ and Vm− as shown in Figure 11.4.

Vsum Vm+ Vm−

2 V 1 V −3 V

0 V 1 V 1 V

−2 V −3 V 1 V

Figure 11.3: Input output table

−

+

1V

−3V

−

+

1V

−3V

+

−

Vm+

+

−

Vm−

−
+VRef+

−
+VRef−

−
+ Vsum

Figure 11.4: Match detect circuit

Choose values for VRef+ and VRef− such that Vsum,Vm+,Vm− satisfy the table in Figure 11.3. Justify
your answer.
Solution:
For the comparator that outputs Vm+, we know that Vm+ = 1V when Vsum > VRef+ and Vm+ = −3V
when Vsum <VRef+. We can use the input output table values to find the restrictions on VRef+.

Vsum = 2V,Vm+ = 1V −→ 2V >VRef+

Vsum = 0V,Vm+ = 1V −→ 0V >VRef+

Vsum =−2V,Vm+ =−3V −→ −2V <VRef+ ,

which means that −2V < VRef+ < 0V. Similarly for Vm−, Vm− = 1V when VRef− > Vsum and Vm− =
−3V when VRef− <Vsum. Again, the table values give

Vsum = 2V,Vm− =−3V −→ VRef− < 2V

Vsum = 0V,Vm− = 1V −→ VRef− > 0V

Vsum =−2V,Vm− = 1V −→ VRef− >−2V ,

which means that 0V < VRef− < 2V. Any choices of VRef+ and VRef− in these ranges are valid, for
example VRef+ =−1V and VRef− = 1V.
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(d) (7 points) In order to compute the inner product, we can use the circuit in Figure 11.5 to integrate the
match signals. You may assume the op-amp is ideal.

−

+

1kΩ

−
+ Vm−(t)

1kΩ

−
+Vm+(t)

1µF

+ −
VC

IC

+

−

VIP(t)

Figure 11.5: Inverting integrator circuit

1 2 3 4 5 6
−3V

1V ms

Vm+(t)

1 2 3 4 5 6
−3V

1V ms

Vm−(t)

Figure 11.6

The waveforms for Vm+(t) and Vm−(t) are given in Figure 11.6.

• Plot IC(t) from t = 0ms to t = 6ms in the graph provided. Label the units and current values
in your graph.

• Compute VIP(6ms). Assume that VIP(0) = 0V.
Show your work.
Solution:
The analysis for this circuit is similar to the inverting summer.

−

+

1kΩ

i2

−
+ Vm−(t)

1kΩ

i1

−
+Vm+(t)

1µF

+ −
VC

IC

+

−

VIP(t)

u−

According to the op-amp golden rules, we know that u− = u+ = 0 and thus we can compute

i1 =
Vm+

1kΩ
, i2 =

Vm−
1kΩ

.

Using KCL at the u− node, we see that IC = i1 + i2, and thus

IC =
Vm++Vm−

1kΩ
.

Using the given waveforms for Vm+(t) and Vm−(t), we can compute and graph IC(t) as follows:
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1 2 3 4 5 6

−2mA

2mA

ms

IC(t)

We can now compute VIP(6ms) since we know that IC = 1µF dVC
dt and VC =−VIP. Integrating both sides

and rearranging yields

VIP(6ms)−VIP(0) =−
∫ 6ms

0

IC(t)
1µF

dt ,

which in this case can be done by computing the area under the curve in our graph for IC(t). Since we
are given VIP(0) = 0V, we now have

VIP(6ms) =− 1
1µF

∫ 6ms

0
IC(t)dt =− 1

1µF
(−2+2−2−2−2+2)mA ·ms = 4V .

(e) (5 points) As we increase the signal length, the maximum/minimum value of VIP also increases. In
order to keep the output voltage to a manageable level, we decide to switch out the 1µF capacitor for
a variable capacitor shown in Figure 11.7.

Figure 11.7: Variable capacitor

The capacitor has square plates with length and width l with a separation of d. Inside, we have a
dielectric material with permittivity ε = 5ε0 that we can slide to change the total capacitance between
the plates. x measures the displacement of the dielectric material. Assuming 0≤ x ≤ l, find the total
capacitance C in terms of l,d,x,ε0. You do not need to reduce your answer. Show your work.
Solution:
The variable capacitor can be split into two sections, one with the dieletric material and one with just
air. The capacitance of the section with air has length x, width l and separation d, and can be computed
as

C1 = ε0
lx
d
.

The capacitance of the section with dielectric material has length l− x, width l and separation d, and
can be computed as

C2 = 5ε0
l(l− x)

d
.
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Since these capacitors are in parallel, the total capacitance can be found as

C =C1 +C2 = ε0
lx
d
+5ε0

l(l− x)
d

.
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