MT1.1 (45 Points) Consider the following vectors in \mathbb{R}^{3} :

$$
\boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{c}
1 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \quad \text { and } \quad \boldsymbol{v}_{3}=\left[\begin{array}{c}
0 \\
\sqrt{3} / 2 \\
-\sqrt{3} / 2
\end{array}\right] .
$$

(a) (5 Points) Determine $\theta_{12}=\angle\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$, the angle between vectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2}.

Solution: $\quad \theta_{12}=\frac{\pi}{2}$
(b) (5 Points) Determine $\mu_{\boldsymbol{v}_{3}}=\operatorname{avg}\left(\boldsymbol{v}_{3}\right)$, the mean of vector \boldsymbol{v}_{3}.

Recall: The mean of a vector $\boldsymbol{y} \in \mathbb{R}^{m}$ is the arithmetic average of its componentsnamely,

$$
\mu_{y}=\operatorname{avg}(\boldsymbol{y})=\frac{y_{1}+\cdots+y_{m}}{m}=\frac{1}{m} \boldsymbol{y}^{\top} \mathbf{1} .
$$

Solution: $\mu_{v_{3}}=0$
(c) (5 Points) Determine $\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\rangle$, the inner product of vectors \boldsymbol{v}_{2} and \boldsymbol{v}_{3}.

Solution: $\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\rangle=0$
(d) (10 Points) Explain why the set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ forms a basis in \mathbb{R}^{3}.

Solution: Show that the set is linearly independent and why the set must span \mathbb{R}^{3} or show that the set are orthogonal and explain why this must mean the vectors form a basis.
(e) (20 Points) Consider the vector

$$
\boldsymbol{x}=\left[\begin{array}{c}
1 / 2 \\
-1 \\
1 / 2
\end{array}\right]
$$

(i) (15 Points) Express \boldsymbol{x} as a linear combination of the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$, and \boldsymbol{v}_{3}. That is, determine the coefficients α_{1}, α_{2}, and α_{3} in the expansion

$$
\boldsymbol{x}=\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}+\alpha_{3} \boldsymbol{v}_{3}
$$

Solution:

$$
\begin{aligned}
\alpha_{1} & =0 \\
\alpha_{2} & =\frac{1}{2} \\
\alpha_{3} & =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

(ii) (5 Points) Are the values of α_{1}, α_{2}, and α_{3} that you found unique? If so, explain why. If not, provide another set of coefficients β_{1}, β_{2}, and β_{3} such that

$$
\boldsymbol{x}=\beta_{1} \boldsymbol{v}_{1}+\beta_{2} \boldsymbol{v}_{2}+\beta_{3} \boldsymbol{v}_{3},
$$

where $\beta_{k} \neq \alpha_{k}$ for at least some $k \in\{1,2,3\}$.
Solution: Yes, the α_{1}, α_{2}, and α_{3} are unique.

MT1.2 (45 Points)

Let $\mathcal{P}_{n}=\operatorname{span}\left(1, t, \ldots, t^{n}\right)$ denote a real-valued vector space of polynomials of degree less than, or equal to, n, where n is a nonnegative integer and $t \in \mathbb{R}$. A generic polynomial in \mathcal{P}_{n} can be expressed as follows:

$$
p(t)=\sum_{i=0}^{n} p_{i} t^{i}=\underbrace{\left[\begin{array}{llll}
1 & t & \cdots & t^{n}
\end{array}\right]}_{\boldsymbol{f}^{\top}(t)} \underbrace{\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{n}
\end{array}\right]}_{\boldsymbol{p}}=\boldsymbol{f}^{\top}(t) \boldsymbol{p},
$$

where $\boldsymbol{f}(t) \in \mathbb{R}^{n+1}$ denotes the vector of monomials (you can think of it as a vectorvalued function of $t), \boldsymbol{p} \in \mathbb{R}^{n+1}$ denotes the vector of the coefficients, and ${ }^{\top}$ denotes transpose.
(a) (5 Points) Determine $\operatorname{dim} \mathcal{P}_{n}$, the dimension of the vector space \mathcal{P}_{n}.

Solution: $\operatorname{dim} \mathcal{P}_{n}=n+1$
(b) (26 Points) Define $\mathcal{V} \subseteq \mathcal{P}_{n}$ as the subset of all polynomials in \mathcal{P}_{n} that have $t=0$ as a root. That is,

$$
\mathcal{V}=\left\{p(t)=\sum_{i=0}^{n} p_{i} t^{i} \mid p(0)=0, p_{i} \in \mathbb{R}, i=0, \ldots, n\right\}
$$

(i) (12 Points) Explain why \mathcal{V} is a subspace of \mathcal{P}_{n}.

Solution: Show that \mathcal{V} fulfills the 3 subspace properties.
(ii) (10 Points) Determine a basis for \mathcal{V}.

Solution: $\quad v_{1}(t)=t, v_{2}(t)=t^{2}, \ldots, v_{n}(t)=t^{n}$
(iii) (4 Points) Determine $\operatorname{dim} \mathcal{V}$, the dimension of \mathcal{V}.

Explain your answer in a brief, yet clear and convincing manner.
You should be able to solve this part even if you're unsure of your solution to part (ii).
Solution: $\operatorname{dim} \mathcal{V}=n$
(c) (14 Points) Define $\mathcal{W} \subseteq \mathcal{P}_{n}$ as the subset of all polynomials in \mathcal{P}_{n} that have $t=1$ as a root. That is,

$$
\mathcal{W}=\left\{p(t)=\sum_{i=0}^{n} p_{i} t^{i} \mid p(1)=0, p_{i} \in \mathbb{R}, i=0, \ldots, n\right\}
$$

(i) (4 Points) Determine $\operatorname{dim} \mathcal{W}$, the dimension of \mathcal{W}.

Solution: $\operatorname{dim} \mathcal{W}=n$
(ii) (10 Points) Determine a basis for \mathcal{W}. Explain your answer in a brief, yet clear and convincing manner.
Solution: One possible basis is $w_{1}(t)=t-1, w_{2}(t)=t^{2}-1, \ldots, w_{k}(t)=$ $t^{k}-1$.

MT1.3 (40 Points) Consider the vector $\boldsymbol{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in \mathbb{R}^{2}.
(a) (25 Points) Let's look at the subset S of \mathbb{R}^{2} defined by

$$
\mathrm{S}=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid\langle\boldsymbol{a}, \boldsymbol{x}\rangle=0\right\} .
$$

(i) (5 Points) Describe, in simple words, the vectors \boldsymbol{x} that form the set S . Solution: S consists of the set of points in \mathbb{R}^{2} that are orthogonal to the vector a.
(ii) (10 Points) Provide a single, well-labeled plot of the vector \boldsymbol{a} and the set S in \mathbb{R}^{2}. Use the standard orthogonal coordinate axes in \mathbb{R}^{2}.

Solution:

(iii) (10 Points) Is S a subspace of \mathbb{R}^{2} ?

If you claim that S is a subspace, prove it.
If you claim that S is not a subspace, show that it fails at least one property of a subspace.
Solution: Yes, S is a subspace of \mathbb{R}^{2}.
(b) (15 Points) Now let's look at the subset V of \mathbb{R}^{2} defined by

$$
\mathrm{V}=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid \boldsymbol{a}^{\top} \boldsymbol{x} \leq 0\right\}
$$

(i) (5 Points) On a well-labeled plot-using the standard orthogonal coordinate axes in \mathbb{R}^{2}-shade the area corresponding to V .

Solution:

(ii) (10 Points) Is V a subspace of \mathbb{R}^{2} ?

If you claim that V is a subspace, prove it.
If you claim that V is not a subspace, show that it fails at least one property of a subspace.
Solution: V is not a subspace.

MT1.4 (35 Points) Consider the following set of twelve vectors in \mathbb{R}^{2} :

$$
\boldsymbol{x}_{k}=\left[\begin{array}{c}
\cos \left(\frac{\pi}{6} k\right) \\
\sin \left(\frac{\pi}{6} k\right)
\end{array}\right], \quad \text { for } \quad k=0,1, \ldots, 11
$$

In what follows, you may or may not find it useful to know that

$$
\begin{aligned}
\cos \left(\frac{\pi}{6}\right) & =\frac{\sqrt{3}}{2} \\
\sin \left(\frac{\pi}{6}\right) & =\frac{1}{2} \\
\cos ^{2} \alpha+\sin ^{2} \alpha & =1 \\
\cos (\pi+\alpha) & =-\cos \alpha \\
\sin (\pi+\alpha) & =-\sin \alpha .
\end{aligned}
$$

(a) (10 Points) Determine $\left\|\boldsymbol{x}_{k}\right\|$, the Euclidean norm (i.e., 2-norm) of \boldsymbol{x}_{k}.

Does your expression depend on k ? Explain why.
Solution: $\quad\left\|x_{k}\right\|^{2}=1$. This value does not depend on k
(b) (10 Points) Draw each of the two vectors \boldsymbol{x}_{1} and \boldsymbol{x}_{7} on the same coordinate plane defined by the two standard orthogonal axes.

Solution:

(c) (15 Points) Determine the vector

$$
\boldsymbol{v}=\sum_{\substack{k=0 \\ k \neq 6}}^{11} \boldsymbol{x}_{k} .
$$

Your expression for \boldsymbol{v} must be in closed form-not, for example, in terms of a sum.

Hint: First determine the vector

$$
\boldsymbol{w}=\sum_{k=0}^{11} \boldsymbol{x}_{k},
$$

and then infer the vector \boldsymbol{v} from \boldsymbol{w}.
Solution: $\quad \boldsymbol{v}=\sum_{k=0, k \neq 6}^{11} \boldsymbol{x}_{k}=\boldsymbol{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

MT1.5 (20 Points) Consider the following two vectors in $\mathbb{R}_{\geq 0}^{2}$:

$$
\boldsymbol{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \boldsymbol{w}=\left[\begin{array}{l}
y \\
x
\end{array}\right] .
$$

We denote by $\mathbb{R}_{\geq 0}$ the set of all nonnegative real numbers-that is,

$$
\mathbb{R}_{\geq 0}=\{x \in \mathbb{R} \mid x \geq 0\}
$$

And we denote by $\mathbb{R}_{\geq 0}^{2}$ the set of all vectors in \mathbb{R}^{2} that have nonnegative components.

Accordingly, $x \geq 0$ and $y \geq 0$ above.
(a) (15 Points) Show that

$$
x y \leq \frac{x^{2}+y^{2}}{2}
$$

Hint: Study the inner product $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ and make judicious use of the CauchySchwarz Inequality.
Solution: Apply the Cauchy Schwarz inequality to $\boldsymbol{v}, \boldsymbol{w}$ and expand the equation.
(b) (5 Points) Show that for any $a, b \geq 0$, the following inequality holds:

$$
\sqrt{a b} \leq \frac{a+b}{2}
$$

Solution: Use the equation from part a. Notice that this equation is very similar that one. How you can convert that inequality to this one?

