**MT1.1 (45 Points)** Consider the following vectors in  $\mathbb{R}^3$ :

$$oldsymbol{v}_1 = egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}, \quad oldsymbol{v}_2 = egin{bmatrix} 1 \ -1/2 \ -1/2 \end{bmatrix}, \quad ext{and} \quad oldsymbol{v}_3 = egin{bmatrix} 0 \ \sqrt{3}/2 \ -\sqrt{3}/2 \end{bmatrix}.$$

(a) (5 Points) Determine  $\theta_{12} = \angle(v_1, v_2)$ , the angle between vectors  $v_1$  and  $v_2$ . Solution:  $\theta_{12} = \frac{\pi}{2}$ 

(b) (5 Points) Determine  $\mu_{v_3} = \text{avg}(v_3)$ , the mean of vector  $v_3$ .

**Recall:** The mean of a vector  $y \in \mathbb{R}^m$  is the arithmetic average of its components—namely,

$$\mu_y = \mathsf{avg}(oldsymbol{y}) = rac{y_1 + \dots + y_m}{m} = rac{1}{m} oldsymbol{y}^\mathsf{T} \, oldsymbol{1}.$$

**Solution:**  $\mu_{v_3} = 0$ 

(c) (5 Points) Determine  $\langle \boldsymbol{v}_2, \boldsymbol{v}_3 \rangle$ , the inner product of vectors  $\boldsymbol{v}_2$  and  $\boldsymbol{v}_3$ . Solution:  $\langle \boldsymbol{v}_2, \boldsymbol{v}_3 \rangle = 0$ 

(d) (10 Points) Explain why the set of vectors  $\{v_1, v_2, v_3\}$  forms a basis in  $\mathbb{R}^3$ . Solution: Show that the set is linearly independent and why the set must span  $\mathbb{R}^3$  or show that the set are orthogonal and explain why this must mean the vectors form a basis.

(e) (20 Points) Consider the vector

$$m{x} = \left[ egin{array}{c} 1/2 \\ -1 \\ 1/2 \end{array} 
ight].$$

(i) (15 Points) Express x as a linear combination of the vectors  $v_1$ ,  $v_2$ , and  $v_3$ . That is, determine the coefficients  $\alpha_1$ ,  $\alpha_2$ , and  $\alpha_3$  in the expansion

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \alpha_3 \boldsymbol{v}_3.$$

**Solution:** 

$$\alpha_1 = 0$$

$$\alpha_2 = \frac{1}{2}$$

$$\alpha_3 = -\frac{\sqrt{3}}{2}$$

(ii) (5 Points) Are the values of  $\alpha_1$ ,  $\alpha_2$ , and  $\alpha_3$  that you found unique? If so, explain why. If not, provide another set of coefficients  $\beta_1$ ,  $\beta_2$ , and  $\beta_3$  such that

$$\boldsymbol{x} = \beta_1 \boldsymbol{v}_1 + \beta_2 \boldsymbol{v}_2 + \beta_3 \boldsymbol{v}_3,$$

where  $\beta_k \neq \alpha_k$  for at least some  $k \in \{1, 2, 3\}$ .

**Solution:** Yes, the  $\alpha_1$ ,  $\alpha_2$ , and  $\alpha_3$  are unique.

## **MT1.2 (45 Points)**

Let  $\mathcal{P}_n = \operatorname{span}(1, t, \dots, t^n)$  denote a real-valued vector space of polynomials of degree less than, or equal to, n, where n is a nonnegative integer and  $t \in \mathbb{R}$ . A generic polynomial in  $\mathcal{P}_n$  can be expressed as follows:

$$p(t) = \sum_{i=0}^{n} p_i t^i = \underbrace{\begin{bmatrix} 1 & t & \cdots & t^n \end{bmatrix}}_{\boldsymbol{f}^\mathsf{T}(t)} \underbrace{\begin{bmatrix} p_0 \\ p_1 \\ \vdots \\ p_n \end{bmatrix}}_{\boldsymbol{p}} = \boldsymbol{f}^\mathsf{T}(t) \boldsymbol{p},$$

where  $f(t) \in \mathbb{R}^{n+1}$  denotes the vector of monomials (you can think of it as a vector-valued function of t),  $p \in \mathbb{R}^{n+1}$  denotes the vector of the coefficients, and  $\mathsf{T}$  denotes transpose.

- (a) (5 Points) Determine dim  $\mathcal{P}_n$ , the dimension of the vector space  $\mathcal{P}_n$ . **Solution:** dim  $\mathcal{P}_n = n + 1$
- (b) (26 Points) Define  $\mathcal{V}\subseteq\mathcal{P}_n$  as the subset of all polynomials in  $\mathcal{P}_n$  that have t=0 as a root. That is,

$$\mathcal{V} = \left\{ p(t) = \sum_{i=0}^{n} p_i t^i \middle| p(0) = 0, p_i \in \mathbb{R}, i = 0, \dots, n \right\}.$$

- (i) (12 Points) Explain why V is a subspace of  $P_n$ . Solution: Show that V fulfills the 3 subspace properties.
- (ii) (10 Points) Determine a basis for V. **Solution:**  $v_1(t) = t$ ,  $v_2(t) = t^2$ , ...,  $v_n(t) = t^n$
- (iii) (4 Points) Determine  $\dim \mathcal{V}$ , the dimension of  $\mathcal{V}$ .

Explain your answer in a brief, yet clear and convincing manner.

You should be able to solve this part *even if* you're unsure of your solution to part (ii).

**Solution:** dim  $\mathcal{V} = n$ 

(c) (14 Points) Define  $W \subseteq \mathcal{P}_n$  as the subset of all polynomials in  $\mathcal{P}_n$  that have t=1 as a root. That is,

$$W = \left\{ p(t) = \sum_{i=0}^{n} p_i t^i \middle| p(1) = 0, p_i \in \mathbb{R}, i = 0, \dots, n \right\}.$$

(i) (4 Points) Determine  $\dim \mathcal{W}$ , the dimension of  $\mathcal{W}$ .

**Solution:** dim W = n

(ii) (10 Points) Determine a basis for W. Explain your answer in a brief, yet clear and convincing manner.

**Solution:** One possible basis is  $w_1(t) = t - 1$ ,  $w_2(t) = t^2 - 1$ , ...,  $w_k(t) = t^k - 1$ .

**MT1.3 (40 Points)** Consider the vector  $\boldsymbol{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$  in  $\mathbb{R}^2$ .

(a) (25 Points) Let's look at the subset S of  $\mathbb{R}^2$  defined by

$$\mathsf{S} = \left\{ oldsymbol{x} \in \mathbb{R}^2 \middle| \left\langle oldsymbol{a}, oldsymbol{x} 
ight
angle = 0 
ight\}.$$

- (i) (5 Points) Describe, in simple words, the vectors x that form the set S. **Solution:** S consists of the set of points in  $\mathbb{R}^2$  that are orthogonal to the vector a.
- (ii) (10 Points) Provide a single, well-labeled plot of the vector a and the set S in  $\mathbb{R}^2$ . Use the standard orthogonal coordinate axes in  $\mathbb{R}^2$ . Solution:



(iii) (10 Points) Is S a subspace of  $\mathbb{R}^2$ ?

If you claim that S is a subspace, prove it.

If you claim that S is <u>not</u> a subspace, show that it fails at least one property of a subspace.

**Solution:** Yes, S is a subspace of  $\mathbb{R}^2$ .

(b) (15 Points) Now let's look at the subset V of  $\mathbb{R}^2$  defined by

$$\mathsf{V} = \left\{ oldsymbol{x} \in \mathbb{R}^2 \middle| oldsymbol{a}^\mathsf{T} oldsymbol{x} \leq 0 
ight\}.$$

(i) (5 Points) On a well-labeled plot—using the standard orthogonal coordinate axes in  $\mathbb{R}^2$ —shade the area corresponding to V.

**Solution:** 



(ii) (10 Points) Is V a subspace of  $\mathbb{R}^2$ ?

If you claim that V is a subspace, prove it.

If you claim that V is <u>not</u> a subspace, show that it fails at least one property of a subspace.

**Solution:** V is <u>not</u> a subspace.

**MT1.4 (35 Points)** Consider the following set of twelve vectors in  $\mathbb{R}^2$ :

$$\boldsymbol{x}_k = \begin{bmatrix} \cos\left(\frac{\pi}{6}k\right) \\ \sin\left(\frac{\pi}{6}k\right) \end{bmatrix}, \quad \text{for} \quad k = 0, 1, \dots, 11.$$

In what follows, you may or may not find it useful to know that

$$\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$
$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$
$$\cos^2\alpha + \sin^2\alpha = 1$$
$$\cos\left(\pi + \alpha\right) = -\cos\alpha$$
$$\sin\left(\pi + \alpha\right) = -\sin\alpha.$$

- (a) (10 Points) Determine  $||x_k||$ , the Euclidean norm (i.e., 2-norm) of  $x_k$ . Does your expression depend on k? Explain why. **Solution:**  $||x_k||^2 = 1$ . This value does not depend on k
- (b) (10 Points) Draw each of the two vectors  $x_1$  and  $x_7$  on the same coordinate plane defined by the two standard orthogonal axes. Solution:



(c) (15 Points) Determine the vector

$$oldsymbol{v} = \sum_{\substack{k=0\k
eq 6}}^{11} oldsymbol{x}_k.$$

Your expression for  $\boldsymbol{v}$  must be in closed form—not, for example, in terms of a sum.

Hint: First determine the vector

$$oldsymbol{w} = \sum_{k=0}^{11} oldsymbol{x}_k,$$

and then infer the vector v from w.

Solution: 
$$v = \sum_{k=0, k\neq 6}^{11} x_k = x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

**MT1.5 (20 Points)** Consider the following two vectors in  $\mathbb{R}^2_{>0}$ :

$$oldsymbol{v} = egin{bmatrix} x \ y \end{bmatrix} \qquad oldsymbol{w} = egin{bmatrix} y \ x \end{bmatrix}.$$

We denote by  $\mathbb{R}_{\geq 0}$  the set of all nonnegative real numbers—that is,

$$\mathbb{R}_{\geq 0} = \{ x \in \mathbb{R} | x \geq 0 \}.$$

And we denote by  $\mathbb{R}^2_{\geq 0}$  the set of all vectors in  $\mathbb{R}^2$  that have nonnegative components.

Accordingly,  $x \ge 0$  and  $y \ge 0$  above.

(a) (15 Points) Show that

$$xy \le \frac{x^2 + y^2}{2}.$$

**Hint:** Study the inner product  $\langle v, w \rangle$  and make judicious use of the Cauchy-Schwarz Inequality.

**Solution:** Apply the Cauchy Schwarz inequality to v, w and expand the equation.

(b) (5 Points) Show that for any  $a,b\geq 0$ , the following inequality holds:

$$\sqrt{ab} \le \frac{a+b}{2}.$$

**Solution:** Use the equation from part a. Notice that this equation is very similar that one. How you can convert that inequality to this one?