EECS 16A
Fall 2020

Some of the Proofs We Have Covered So Far

1. Note 3 | 3.1.1
Prove the following two definitions of Linear Dependence are equivalent:

Definition 3.1: A set of vectors \(\{ \vec{v}_1, ..., \vec{v}_n \} \) is linearly dependent if there exist scalars \(\alpha_1, ..., \alpha_n \) such that \(\alpha_1 \vec{v}_1 + ... + \alpha_n \vec{v}_n = 0 \) and not all \(\alpha_i \)'s are equal to zero.

Definition 3.2: A set of vectors \(\{ \vec{v}_1, ..., \vec{v}_n \} \) is linearly dependent if there exist scalars \(\alpha_1, ..., \alpha_n \) and an index \(i \) such that \(\vec{v}_i = \sum_{j \neq i} \alpha_j \vec{v}_j \). In words, a set of vectors is linearly dependent if one of the vectors could be written as a linear combination of the rest of the vectors.

2. Note 3 | 3.1.3
Prove the following theorem:

Theorem 3.1: If the system of linear equations \(A\vec{x} = \vec{b} \) has an infinite number of solutions, then the columns of \(A \) are linearly dependent.

3. Note 4 | Example 4.1 (Example of Constructive Proof)
Prove that span \(\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} = \mathbb{R}^2 \)

4. Note 4 | Example 4.2 (Example of Proof By Contradiction)
Prove the following theorem by contradiction:

Theorem 4.1: If the columns of \(A \) in the system of linear equations \(A\vec{x} = \vec{b} \) are linearly dependent, then the system does not have a unique solution.

5. Note 4 | Example 4.3
Let \(\{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \} \) be a set of linearly dependent vectors in \(\mathbb{R}^n \). Take any matrix \(A \in \mathbb{R}^{m \times n} \). Prove that the set of vectors \(\{ A\vec{v}_1, A\vec{v}_2, ..., A\vec{v}_n \} \) is linearly dependent.

6. Note 4 | Example 4.4 (Example of Direct Proof)
Assume that vectors \(\vec{v}_1, \vec{v}_2 \) and \(\vec{v}_1 + \vec{v}_2 \) are all solutions to the system of linear equations \(A\vec{x} = \vec{b} \). Prove that \(\vec{b} \) must be the zero vector.

7. Discussion 3A | Q1
Given some set of vectors \(\{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \} \), show the following:

(a) \(\text{span} \{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \} = \text{span} \{ \alpha \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \} \), where \(\alpha \) is a non-zero scalar. In other words, we can scale our spanning vectors and not change their span.

(b) \(\text{span} \{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \} = \text{span} \{ \vec{v}_1 + \vec{v}_2, \vec{v}_2, ..., \vec{v}_n \} \). In other words, we can replace one vector with the sum of itself and another vector and not change their span.

8. Discussion 3A | Q2 Part 3
The distributivity property of matrix-vector multiplication holds for any vectors and matrices. Show for general \(A \in \mathbb{R}^{2 \times 2} \) and \(\vec{v}_1, \vec{v}_2 \in \mathbb{R}^2 \) that \(A(\vec{v}_1 + \vec{v}_2) = A\vec{v}_1 + A\vec{v}_2 \).
9. Note 6 | 6.1.1

Prove the following theorems:

(a) **Theorem 6.1**: If A is an invertible matrix, then its inverse must be unique.

(b) **Theorem 6.2**: If $QP = I$ and $RQ = I$, then $P = R$. The matrix P can be thought of as the “right” inverse of Q and the matrix R can be thought of as the “left” inverse of Q.

10. Note 6 | 6.2

Prove the following theorems:

(a) **Theorem 6.3**: If a matrix A is invertible, there exists a unique solution to the equation $A\mathbf{x} = \mathbf{b}$ for all possible vectors \mathbf{b}.

(b) **Theorem 6.4**: If a matrix A is invertible, its columns are linearly independent.

11. Homework 4 | Problem 6(f)

Consider a system consisting of k reservoirs such that the entries of each column in the system’s state transition matrix sum to one.

Prove that if s is the total amount of water in the system at timestep n, then total amount of water at timestep $n + 1$ will also be s.

12. Discussion 4B | Q3

Is the set $V = \left\{ \vec{v} \mid \vec{v} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + d \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$, where $c, d \in \mathbb{R}$, a subspace of \mathbb{R}^3?

13. Note 9 | 9.6.1

Prove the following theorem:

Theorem 9.1: Given two eigenvectors \vec{v}_1 and \vec{v}_2 corresponding to two different eigenvalues λ_1 and λ_2 of a matrix A, it is always the case that \vec{v}_1 and \vec{v}_2 are linearly independent.

14. (Proof Out of Scope) Note 9 | 9.6.2 (Proof By Induction)

Prove the following theorem:

Theorem 9.2: Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ be eigenvectors of an $n \times n$ matrix with distinct eigenvalues. It is the case that all the \vec{v}_i are linearly independent from one another.

The proof of this theorem is out of scope, but is presented anyway just for reference for those who are interested.